Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Đặng Phương Nam
4 tháng 4 2017 lúc 12:42

Bài giải:

Gọi x (cm), y (cm) là độ dài hai cạnh góc vuông của tam giác vuông. Điều kiện x > 0, y > 0.

Tăng mỗi cạnh lên 3 cm thì diện tích tăng them 36 cm2 nên ta được:

= + 36

Một cạnh giảm 2 cm, cạnh kia giảm 4 cm thì diện tích của tam giác giảm 36 cm2 nên ta được

= - 26

Ta có hệ phương trình

Giải ra ta được nghiệm x = 9; y = 12.

Vậy độ dài hai cạnh góc vuông là 9 cm, 12 cm.



Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 8 2019 lúc 17:40

Gọi x (cm) , y (cm) là độ dài hai cạnh góc vuông của tam giác vuông (x > 2, y > 4).

Diện tích tam giác ban đầu là 1 2 xy  (cm2)

+ Tăng mỗi cạnh lên 3cm thì tam giác vuông mới có độ dài 2 cạnh là x + 3(cm) và y + 3 (cm)

Diện tích tam giác mới là: 1 2 ⋅ ( x + 3 ) ( y + 3 )  (cm2)

Diện tích tăng thêm 36cm2 nên ta có phương trình:

Giải bài 31 trang 23 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Giảm một cạnh 2cm và giảm cạnh kia 4cm thì tam giác vuông mới có 2 cạnh là : x – 2 (cm) và y – 4 (cm).

Diện tích tam giác mới là: 1 2 ( x − 2 ) ( y − 4 )  (cm2).

Diện tích giảm đi 26cm2 nên ta có phương trình

Giải bài 31 trang 23 SGK Toán 9 Tập 2 | Giải toán lớp 9

Lấy phương trình thứ hai trừ phương trình thứ nhất ta được:

Giải bài 31 trang 23 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy tam giác có hai cạnh lần lượt là 9cm và 12cm.

Kiến thức áp dụng

Giải bài toán bằng cách lập hệ phương trình :

Bước 1 : Lập hệ phương trình

- Chọn các ẩn số và đặt điều kiện thích hợp

- Biểu diễn các đại lượng chưa biết và đã biết theo ẩn

- Lập các phương trình biểu thị mối quan hệ giữa các đại lượng theo đề bài.

- Từ các phương trình vừa lập rút ra được hệ phương trình.

Bước 2 : Giải hệ phương trình (thường sử dụng phương pháp thế hoặc cộng đại số).

Bước 3 : Đối chiếu nghiệm với điều kiện và kết luận.

Bùi Nam Khánh
3 tháng 3 2021 lúc 16:55

một vật có khối lượng 124g và thể tích 15 cm3 là hợp kim của đồng và kẽm . tính xem trong đó có bao nhiêu gam đồng và bao nhiêu gam kẽm , biết rằng cứ 89 g đồng thì có thể tích là 10 cm3 và 7g kẽm có thể tích là 1 cm3

Khách vãng lai đã xóa
Anh Triêt
Xem chi tiết
Anh Triêt
30 tháng 7 2016 lúc 21:06

 Bài 31 : Tính độ dài hai cạnh góc vuông của 1 tam giác vuông, biết rằng nêu tang mỗi cạnh lên 3 cm thì diện tích tam giác đó sẽ tăng thêm 36 cm vuông , và nếu 1 cạnh giảm đi 2 cm , cạnh kia giảm đi 4 Cm thì diện tích của tam giác giảm đi 26 cm vuông . 

- Gọi độ dài hai cạnh góc vuông lần lượt là x và y [ đơn vị; cm , 4 (nhỏ hơn) x ≤ y ] - phím shifft nhà mình bị hư, bạn thông cảm, hì. 
- Diện tích tam giác đó là; (xy)/2 
- Theo đề bài ta có; 
* nêu tang mỗi cạnh lên 3 cm thì diện tích tam giác đó sẽ tăng thêm 36 cm vuông; 
[ (x+3)(y+3) ]/2 = (xy)/2 + 36 
tương đương với; x + y = 21 

* nếu 1 cạnh giảm đi 2 cm , cạnh kia giảm đi 4 Cm thì diện tích của tam giác giảm đi 26 cm vuông . 
[ (x-2)(y-4) ]/2 = (xy)/2 - 26 
tương đương với; 2x + y = 30 

Giải hệ phương trình; 
x + y = 21 
2x + y = 30 
ta được; x = 9, y = 12 

Vậy; Độ dài hai cạnh góc vuông của tam giác lần lượt là 9cm và 12cm. 

Bài 38 : Nếu 2 vòi nước cùng chảy vào 1 bể nước cạn ( ko có nước) thì bể sẽ đầy trong 1h 20 phút. Nếu mở vòi thứ nhất trong 10 phút và vòi thứ 2 trong 12 phút thì chỉ được 2/15 bể. Hỏi nếu mở riêng từng vòi thì thời gian để mỗi vòi chảy đây bể là bao nhiêu ? 

- Gọi thời gian để vòi thứ nhất chảy một mình đầy bể là x [ giờ, x (lớn hơn) 0 ] 
- Gọi thời gian để voi thứ hai chảy một mình đầy bể là y [ giờ, y (lớn hơn) 0 ] 
- Lượng nước chảy vào bể trong một giờ của hai vòi lần lượt là 1/x và 1/y [ phần bể ] 
Theo đề bài, ta có; 
* Nếu 2 vòi nước cùng chảy vào 1 bể nước cạn ( ko có nước) thì bể sẽ đầy trong 1h 20 phút = 4/3 giờ 
(1/x) + (1/y) = 1/(4/3 = 3/4 [1] 

* Nếu mở vòi thứ nhất trong 10 phút ( 1/6 giờ ).và vòi thứ 2 trong 12 phút ( 1/5 giờ ) thì chỉ được 2/15 bể. 

(1/x)(1/6) + (1/y)(1/5) = 2/15 [2] 

Giải hệ phương trình [1] và [2] bằng phương pháp đặt ẩn phụ, ta được; 
x = 2 ; y = 4 

cô gái tóc đen
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Ngọc Sơn Nguyễn
Xem chi tiết
Tiểu Bạch Kiểm
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 3 2021 lúc 22:28

Gọi cạnh góc vuông lớn và cạnh góc vuông nhỏ lần lượt là a(cm) và b(cm)(Điều kiện: a>0; b>0; a>b)

Diện tích tam giác vuông là: 

\(\dfrac{1}{2}ab\left(cm^2\right)\)

Vì khi tăng cạnh lớn lên 5cm và tăng cạnh nhỏ thêm 3cm thì diện tích tăng thêm 80cm2 nên ta có phương trình:

\(\dfrac{1}{2}\left(a+5\right)\left(b+3\right)=\dfrac{1}{2}ab+80\)

\(\Leftrightarrow\dfrac{1}{2}\left(ab+3a+5b+15\right)=\dfrac{1}{2}ab+80\)

\(\Leftrightarrow\dfrac{1}{2}ab+\dfrac{3}{2}a+\dfrac{5}{2}b+\dfrac{15}{2}=\dfrac{1}{2}ab+80\)

\(\Leftrightarrow\dfrac{3}{2}a+\dfrac{5}{2}b=\dfrac{145}{2}\)

\(\Leftrightarrow3a+5b=145\)(1)

Vì khi giảm mỗi cạnh đi 2cm thì diện tích giảm 35cm2 nên ta có phương trình:

\(\dfrac{1}{2}\left(a-2\right)\left(b-2\right)=\dfrac{1}{2}ab-35\)

\(\Leftrightarrow\dfrac{1}{2}\left(ab-2a-2b+4\right)=\dfrac{1}{2}ab-35\)

\(\Leftrightarrow\dfrac{1}{2}ab-a-b+2=\dfrac{1}{2}ab-35\)

\(\Leftrightarrow-a-b=-37\)

hay a+b=37(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}3a+5b=145\\a+b=37\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+5b=145\\3a+3b=111\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2b=34\\a+b=37\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=17\\a=37-b=37-17=20\end{matrix}\right.\)(thỏa ĐK)

Vậy: Độ dài hai cạnh góc vuông lần lượt là 17cm và 20cm

Khoa dang
Xem chi tiết
Akai Haruma
1 tháng 3 2022 lúc 0:38

Lời giải:

Gọi độ dài cạnh góc vuông ban đầu là $a,b$ (cm) 

Theo bài ra ta có:
$(a+2)(b+3)=ab+50$

$\Leftrightarrow 3a+2b=44(1)$

Và:

$(a-2)(b-2)=ab-32$

$\Leftrightarrow -2a-2b+4=-32$

$\Leftrightarrow a+b=18(2)$

Từ $(1); (2)\Rightarrow a=8; b=10$ (cm)

Trúc Mai Huỳnh
Xem chi tiết
Tue Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 20:51

Bài 4: 

1) 

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Xét ΔABC có AH là đường cao ứng với cạnh huyền BC, ta có:

\(S_{ABC}=\dfrac{AH\cdot BC}{2}\)(1)

Ta có: ΔABC vuông tại A(gt)

nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}\)(2)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)

c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=12^2+16^2=400\)

hay BC=20(cm)

Ta có: \(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot20=12\cdot16=192\)

hay AH=9,6(cm)

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 21:06

Bài 3: 

Gọi x(cm) là độ dài cạnh góc vuông nhỏ(Điều kiện: x>0)

Độ dài cạnh góc vuông lớn là: x+2(cm)

Theo đề, ta có phương trình:

\(\dfrac{\left(x-3\right)\left(x+2+4\right)}{2}=\dfrac{x\left(x+2\right)}{2}+30\)

\(\Leftrightarrow\left(x-3\right)\left(x+6\right)=x\left(x+2\right)+30\)

\(\Leftrightarrow x^2+3x-18-x^2-2x=30\)

\(\Leftrightarrow x-18=30\)

hay x=48(thỏa ĐK)

Vậy: Chu vi của tam giác vuông đó là:\(98+2\sqrt{1201}\left(cm\right)\)

Nguyễn Lê Phước Thịnh
15 tháng 7 2021 lúc 22:18

Bài 4:

2: 

Độ dài cạnh của hình lập phương là:

\(\sqrt{\dfrac{726}{6}}=11\left(cm\right)\)

Thể tích hình lập phương là:

\(11^3=1331\left(cm^3\right)\)