Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
loveyoongi03
Xem chi tiết
Ngô Thành Chung
1 tháng 9 2021 lúc 11:33

y = \(\dfrac{sin^2x}{cosx\left(sinx-cosx\right)}+\dfrac{1}{4}\)

y = \(\dfrac{sin^2x}{sinx.cosx-cos^2x}+\dfrac{1}{4}=\dfrac{\dfrac{sin^2x}{cos^2x}}{\dfrac{sinx.cosx}{cos^2x}-1}+\dfrac{1}{4}\)

y = \(\dfrac{tan^2x}{tanx-1}+\dfrac{1}{4}\)

y = \(\dfrac{4tan^2x+tanx-1}{4tanx-4}\). Đặt t =  tanx. Do x ∈ \(\left(\dfrac{\pi}{4};\dfrac{\pi}{2}\right)\) nên t ∈ (1 ; +\(\infty\))\

Ta đươc hàm số f(t) = \(\dfrac{4t^2+t-1}{4t-4}\)

⇒ ymin = \(\dfrac{17}{4}\) khi t = 2. hay x = arctan(2) + kπ 

Vũ Ngọc Duy
Xem chi tiết
alibaba nguyễn
16 tháng 10 2016 lúc 20:36

Toán này lớp 8 đúng không ta

\(\sqrt{-x^2+2x+2}=\sqrt{3-\left(x^2-2x+1\right)}\)

\(\sqrt{3-\left(x-1\right)^2}\le\sqrt{3}\)

Đạt được khi x = 1

Câu còn lại làm tương tự

Phạm Dương Ngọc Nhi
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 8 2021 lúc 21:50

\(y^2=sin2x+cos2x+2\sqrt{sin2x.cos2x}\)

Đặt \(sin2x+cos2x=t\Rightarrow t\in\left[1;\dfrac{1+\sqrt{3}}{2}\right]\)

\(sin2x.cos2x=\dfrac{t^2-1}{2}\)

\(y^2=f\left(t\right)=t+\sqrt{2\left(t^2-1\right)}\)

\(f'\left(t\right)=1+\dfrac{2t}{\sqrt{2\left(t^2-1\right)}}>0\Rightarrow f\left(t\right)\) đồng biến

\(\Rightarrow y^2\le f\left(\dfrac{1+\sqrt{3}}{2}\right)=\dfrac{\left(1+\sqrt[4]{3}\right)^2}{2}\)

\(\Rightarrow y\le\dfrac{1+\sqrt[4]{3}}{\sqrt{2}}\)

Vũ Ngọc Thảo Nguyên
Xem chi tiết
My Hope
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 7 2023 lúc 21:55

a: \(A=\dfrac{x^4+x^2+11x^2+11}{x^4+x^2+5x^2+5}=\dfrac{\left(x^2+11\right)\left(x^2+1\right)}{\left(x^2+5\right)\left(x^2+1\right)}=\dfrac{x^2+11}{x^2+5}\)

b: \(A=\dfrac{x^2+5+6}{x^2+5}=1+\dfrac{6}{x^2+5}< =1+\dfrac{6}{5}=\dfrac{11}{5}\)

Dấu = xảy ra khi x=0

25. Lê Hoàng Yến Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2021 lúc 21:22

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)

Do đó: x=18; y=12; z=9

《Danny Kazuha Asako》
22 tháng 10 2021 lúc 21:38

a) Thay x + 3y - 2z vào biểu thức ta có:

 \(\dfrac{x - 1}{3} = \dfrac{3(y + 2)}{3 . 4} = \dfrac{2(z - 2)}{2 . 3}\) = \(​​​​\dfrac{x - 1}{3} = \dfrac{3x + 6}{12} = \dfrac{2z - 4}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhua ta có:

\(​​​​\dfrac{x - 1}{3} = \dfrac{3y + 6}{12} = \dfrac{2z - 4}{6} = ​​​​\dfrac{x - 1}{3}+ \dfrac{3y + 6}{12} -\dfrac{2z - 4}{6}\) 

=\(​​​​\dfrac{x - 1 + 3y + 6 - 2z + 4}{3 + 12 -6} \) = \(​​​​\dfrac{(x + 3y - 2z) + ( -1 + 6 +4)}{3 + 12 - 6} \)

=\(​​​​\dfrac{36 + 9}{9}\) = 5

=> \(​​​​\dfrac{x - 1}{3} =\) 5 => x - 1 = 5.3 =15 => x = 5+1 = 6

=>

=>

Vậy ...

(Bạn dựa theo cách này và lm những bài tiếp nhé!)

 

 

 

 

 

Trần Anh Hoàng
Xem chi tiết
Akai Haruma
12 tháng 1 2023 lúc 19:23

Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{8}{9y}+\frac{18}{25z}\right)(x+y+z)\geq (\sqrt{2}+\sqrt{\frac{8}{9}}+\sqrt{\frac{18}{25}})^2\)

$\Leftrightarrow A.2\geq \frac{2312}{225}$

$\Leftrightarrow A\geq \frac{1156}{225}$

Vậy $A_{\min}=\frac{1156}{225}$

Ngô Thành Chung
Xem chi tiết
Akai Haruma
19 tháng 1 2021 lúc 1:12

Lời giải:

a) 

Áp dụng BĐT Bunhiacopxky:

\((y-2x)^2\leq (16y^2+36x^2)(\frac{1}{16}+\frac{1}{9})=9.\frac{25}{144}\)

\(\Rightarrow \frac{-5}{4}\leq y-2x\leq \frac{5}{4}\Rightarrow \frac{15}{4}\leq y-2x+5\leq \frac{25}{4}\)

Vậy $A_{\min}=\frac{15}{4}$ và $A_{\max}=\frac{25}{4}$

b) 

Áp dụng BĐT Bunhiacopxky:

\((2x-y)^2\leq (\frac{x^2}{4}+\frac{y^2}{9})(16+9)=25\)

\(\Rightarrow -5\leq 2x-y\leq 5\Leftrightarrow -7\leq 2x-y-2\leq 3\)

Vậy $B_{min}=-7; B_{\max}=3$

gyurbsrg
Xem chi tiết
Etermintrude💫
15 tháng 3 2021 lúc 5:49

undefined