Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cânsever
Xem chi tiết
Cânsever
Xem chi tiết
Cânsever
Xem chi tiết
Ngọc Trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 14:25

\(\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}=-\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\)

\(=\dfrac{1}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

2moro
Xem chi tiết
Trịnh Hà
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 10 2021 lúc 22:47

\(\overrightarrow{BM}=\dfrac{\overrightarrow{BA}+\overrightarrow{BC}}{2}=\dfrac{\overrightarrow{BA}+\overrightarrow{BA}+\overrightarrow{AC}}{2}=-\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AC}\)

\(\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}=\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}=\dfrac{3}{5}\overrightarrow{AB}+\dfrac{2}{5}\overrightarrow{AC}\)

Nam Trần
Xem chi tiết
Nguyễn Phan Mai Chi
Xem chi tiết
Lê Song Phương
5 tháng 10 2023 lúc 15:38

Trước hết ta chứng minh bổ đề sau:

Bổ đề 1: Cho tam giác ABC và 1 điểm M trên cạnh BC. Khi đó: \(\overrightarrow{AM}=\dfrac{MC}{BC}\overrightarrow{AB}+\dfrac{MB}{BC}\overrightarrow{AC}\)

Thật vậy, ta có \(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\)

\(=\overrightarrow{AB}+\dfrac{BM}{BC}\overrightarrow{BC}\)

\(=\overrightarrow{AB}+\dfrac{BM}{BC}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)

\(=\left(1-\dfrac{BM}{BC}\overrightarrow{AB}\right)+\dfrac{BM}{BC}\overrightarrow{AC}\)

\(=\dfrac{CM}{BC}\overrightarrow{AB}+\dfrac{BM}{BC}\overrightarrow{AC}\), bổ đề 1 được chứng minh.

Gọi P là giao điểm của AI và BC. Ta có: 

\(\dfrac{MA}{MB}.\dfrac{PB}{PC}.\dfrac{NC}{NA}=1\) \(\Rightarrow x.\dfrac{PB}{PC}.\dfrac{1}{y}=1\) \(\Rightarrow\dfrac{PB}{PC}=\dfrac{y}{x}\) \(\Rightarrow\dfrac{CP}{CB}=\dfrac{x}{x+y}\)

Mặt khác, \(\dfrac{IP}{IA}.\dfrac{MA}{MB}.\dfrac{CB}{CP}=1\) \(\Rightarrow\dfrac{IP}{IA}.x.\dfrac{x+y}{x}=1\) \(\Rightarrow\dfrac{IP}{IA}=\dfrac{1}{x+y}\)

Do đó \(\overrightarrow{AI}=\left(x+y\right)\overrightarrow{IP}\)

Mà theo bổ đề 1: \(\overrightarrow{IP}=\dfrac{PC}{BC}\overrightarrow{IB}+\dfrac{PB}{BC}\overrightarrow{IC}\)

\(=\dfrac{x}{x+y}\overrightarrow{IB}+\dfrac{y}{x+y}\overrightarrow{IC}\)

\(\Rightarrow\overrightarrow{AI}=x\overrightarrow{IB}+y\overrightarrow{IC}\) (đpcm)

 

 

 

 

vũ ngọc linh
Xem chi tiết