Cho tam giác ABC có trung tuyến AM điểm K thuộc AC sao cho AK=1/3 AC a. Phân tích vecto BK vecto BA và vecto BC b. Gọi I là trung điểm của AM. Chứng minh 3 điểm B, I, K thẳng hàng
Cho Δ ABC . Trên tia BC lấy điểm D sao cho 3BD = 2BC (3 lần vecto BD = 2 lần vecto BC ) . Gọi E là điểm thỏa mãn : 3EA+EB+2EC = 0 (vecto)
a. Biểu thị vecto AD , AE theo 2 vecto AB , AC
b. Chứng minh A , E , D thẳng hàng và E là trung điểm AD
c. Trên AC lấy F và đặt FA = kAC (k ϵ R , vecto) . Tìm k để B , E , F thẳng hàng
CHo tam giác ABC, M là trung điểm của AC, N thuộc BC; 3 vecto BN=2 vecto NC. phân tích các vecto BM, AN,MN theo vecto AB,AC
Cho tam giác ABC. M, D lần lượt là trung điểm AB, BC. N trên cạnh AC sao cho CN = 2NA. Lấy K là trung điểm của MN. Phân tích vecto KD theo 2 vecto AB và AC.
1. cho tam giác ABC. điểm M trên cạnh BC sao cho MB=2MC. hãy phân tích vecto AM theo hai vecto x=AB, y=AC
2.Cho tam giác ABC có M,D lần lượt là trung điểm của AB,BC và N là điểm trên cạnh AC sao cho vecto AN=\(\dfrac{1}{2}\)vecto NC. Gọi K là trung điểm của MN.
a. CMRvecto AK=\(\dfrac{1}{4}\) vecto AB + \(\dfrac{1}{6}\)vecto AC
b. CMR vecto KD =\(\dfrac{1}{4}\)vecto vecto AB + \(\dfrac{1}{3}\) vecto AC
3. Cho tam giác ABC. trên cạnh AB,AC lấy 2 điển D và E sao cho vecto AD = 2 vecto DB, vecto CE= 3 vecto EA. gọi M là trung điểm DE và I là trung điểm BC. CMR
a. vecto AM =\(\dfrac{1}{3}\) vecto AB+\(\dfrac{1}{8}\)vecto AC
b. vecto MI= \(\dfrac{1}{6}\)vecto AB+ \(\dfrac{3}{8}\)vecto AC
gọi AM là trung tuyến của tam giác ABC .Vẽ vecto BD =vecto AC .CMR:a) vecto AB=vecto CD;vecto AM= vecto MD;vecto BM= vecto MC
GIÚP MÌNH VỚI Ạ
Cho tam giác ABC.Gọi M là trung điểm của AB,M thuộc BC sao cho vecto BM bằng 2 lần vecto BC.Phân tích vecto BM theo vecto AB và AC
Cho tam giác ABC có trung tuyến AK. Gọi M là trung điểm của AK và I là điểm trên cạnh AC sao cho AC=3AI. Đặt\(\) vectơ BA= vecto a, vecto BC= vecto b.Hãy phân tích vecto BI, BM theo vecto a, b. chứng minh ba điểm B,M, I thẳng hàng
Cho tam giác ABC có N thuộc cạnh BC sao cho BN = 2NC . Phân tích vecto AN theo hai vecto AB và vecto AC