Rút gọn biểu thức:
D = \(\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}}\)
Cho biểu thức : \(H=\dfrac{1}{\sqrt{x}+1}-\dfrac{3}{x\sqrt{x}+1}+\dfrac{2}{x-\sqrt{x}+1}\)với \(x\ge0\)
a) Rút gọn biểu thức
b) chứng minh H\(\le\)1
Cho biểu thức H = \(\left(\dfrac{a-3\sqrt{a}}{a-2\sqrt{a}-3}-\dfrac{2a}{a-1}\right)\): \(\dfrac{1-\sqrt{a}}{a-2\sqrt{a}+1}\) với a \(\ge\) 0, a \(\ne\) 1, a \(\ne\) 9
a) Rút gọn biểu thức H
b) Tìm a khi H = 2023
a) \(H=\left(\dfrac{a-3\sqrt{a}}{a-2\sqrt{a}-3}-\dfrac{2a}{a-1}\right):\dfrac{1-\sqrt{a}}{a-2\sqrt{a}+1}\)
\(H=\left[\dfrac{\sqrt{a}\left(\sqrt{a}-3\right)}{\left(\sqrt{a}-3\right)\left(\sqrt{a}+1\right)}-\dfrac{2a}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]:\dfrac{1-\sqrt{a}}{\left(\sqrt{a}-1\right)^2}\)
\(H=\left[\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\dfrac{2a}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]:\dfrac{-\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)^2}\)
\(H=\dfrac{a-\sqrt{a}-2a}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}:\dfrac{-1}{\sqrt{a}-1}\)
\(H=\dfrac{-a-\sqrt{a}}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\cdot-\left(\sqrt{a}-1\right)\)
\(H=\dfrac{-\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\cdot-\left(\sqrt{a}-1\right)\)
\(H=\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\)
\(H=\sqrt{a}\)
b) Thay x = 2023 vào ta có:
\(H=\sqrt{2023}\)
Tìm điều kiện xác định và rút gọn biểu thức:
D=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)
E=\(\left(\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{2-\sqrt{x}}{3-\sqrt{x}}-\dfrac{\sqrt{x}-8}{x-\sqrt{x}-6}\right):\left(1-\dfrac{\sqrt{x}+6}{2\sqrt{x}+4}\right)\)
a)ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
Ta có: \(D=\dfrac{\sqrt{x}-2}{\sqrt{x}+3}-\dfrac{5}{x+\sqrt{x}-6}+\dfrac{1}{2-\sqrt{x}}\)
\(=\dfrac{x-4\sqrt{x}+4-5-\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-5\sqrt{x}-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)
rút gọn biểu thức
\(G=\dfrac{\sqrt[3]{a}.a^{\dfrac{2}{3}}}{\left(a^{4-2\sqrt{3}}\right)^{4+2\sqrt{3}}}\)
\(G=\dfrac{a^{\sqrt{7}+1}.a^{2-\sqrt{7}}}{\left(a^{\sqrt{2}-2}\right)^{\sqrt{2}+2}}\)
\(H=\dfrac{a^2.\left(a^{-2}.b^3\right).b^{-1}}{\left(a^{-1}.b\right)^3.a^{-5}.b^{-2}}\)
\(H=\dfrac{b^3.a^{-4}.\left(ab^2\right)^3}{\left(a^2\right)^{-2}.\left(ab^3\right)^2.b^2}\)
\(H=\dfrac{b^3.a^{-4}.\left(ab^2\right)^3}{\left(a^2\right)^{-2}.\left(ab^3\right)^2.b^2}\)
\(H=\dfrac{b^3.a^{-4}.\left(ab^2\right)^3}{\left(a^2\right)^{-2}.\left(ab^3\right)^2.b^2}\)
Rút gọn và tính giá trị biểu thức:
a) D= \(\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}}\)với h=3
\(D=\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}}\)
\(=\dfrac{1}{\sqrt{h-1+2\sqrt{h-1}+1}}+\dfrac{1}{\sqrt{h-1-2\sqrt{h-1}+1}}\)
\(=\dfrac{1}{\sqrt{\left(\sqrt{h-1}+1\right)^2}}+\dfrac{1}{\sqrt{\left(\sqrt{h-1}-1\right)^2}}\)
\(=\dfrac{1}{\sqrt{h-1}+1}+\dfrac{1}{\sqrt{h-1}-1}\)
\(=\dfrac{\sqrt{h-1}-1+\sqrt{h-1}+1}{\left(\sqrt{h-1}+1\right)\left(\sqrt{h-1}-1\right)}\)
\(=\dfrac{2\sqrt{h-1}}{\left(\sqrt{h-1}+1\right)\left(\sqrt{h-1}-1\right)}\)
Thay \(h=3\) vào biểu thức ta được :
\(\dfrac{2\sqrt{3-1}}{\left(\sqrt{3-1}+1\right)\left(\sqrt{3-1}-1\right)}=\dfrac{2\sqrt{2}}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=\dfrac{2\sqrt{2}}{1}=2\sqrt{2}\)
Chúc bạn học tốt
Cho biểu thức H = \(\dfrac{1}{\sqrt{x-1}-\sqrt{x}}+\dfrac{1}{\sqrt{x-1}+\sqrt{x}}+\dfrac{x\sqrt{x}-x}{\sqrt{x}-1}\)
a) Rút gọn biểu thức H
b) Tính giá trị của H khi x = \(\dfrac{53}{9-2\sqrt{7}}\)
a: \(H=\dfrac{\sqrt{x-1}+\sqrt{x}+\sqrt{x-1}-\sqrt{x}}{x-1-x}+x\)
\(=-2\sqrt{x-1}+x\)
b: \(x=\dfrac{53}{9-2\sqrt{7}}=9+2\sqrt{7}\)
Khi x=9+2 căn 7 thì \(H=-2\cdot\sqrt{8+2\sqrt{7}}+9+2\sqrt{7}\)
\(=-2\left(\sqrt{7}+1\right)+9+2\sqrt{7}\)
=-2+9=7
rút gọn
g, \(\left(\dfrac{5-2\sqrt{5}}{2-\sqrt{5}}-2\right).\left(\dfrac{5+3\sqrt{5}}{3+\sqrt{5}}-2\right)\) h,\(\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\sqrt{3\dfrac{1}{3}}\right).\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\dfrac{1}{5}}\right)\)
g: \(=\left(-\sqrt{5}-2\right)\left(\sqrt{5}-2\right)\)
=-(căn 5+2)(căn 5-2)
=-(5-4)=-1
h: \(=\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\dfrac{\sqrt{30}}{3}\right)\left(\dfrac{\sqrt{30}}{5}+\sqrt{2}-\dfrac{4}{5}\sqrt{5}\right)\)
=4/5*căn 10+4/3*căn 6-16/15*căn 15+2/5*căn 15+2-4/5*căn 10+30/15+2/3*căn 15-4/3*căn 6
=4
Cho biểu thức: \(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)
a, Rút gọn H b,Tìm a để H < 2
c, Tính H khi \(a^2+3a=0\) d, Tìm a để H = 5
Cho biểu thức: \(M=\dfrac{1}{\sqrt{x}+\sqrt{x-1}}-\dfrac{1}{\sqrt{x}-\sqrt{x-1}}-\dfrac{\sqrt{x^3}-x}{1-\sqrt{x}}\)
a, Rút gọn M b, Tìm x để M > 0
c, Tính M khi \(x=\dfrac{53}{9-2\sqrt{7}}\)
Mn ơi giúp mk 2 bài này ạ . Mk đang cần gấp
a) Rut gon H
\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}+\dfrac{1}{2-\sqrt{a}}\)
\(H=\dfrac{\sqrt{a}+2}{\sqrt{a}+3}-\dfrac{5}{a+\sqrt{a}-6}-\dfrac{1}{\sqrt{a}-2}\)
DKXD : \(\left\{{}\begin{matrix}\sqrt{a}+3\ne0\\\sqrt{a}-2\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a\ne9\\a\ne4\end{matrix}\right.\)
Ta co : \(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\dfrac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(H=\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)-5-\left(\sqrt{a}+3\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)
\(H=\dfrac{a-\sqrt{a}-6}{a+\sqrt{a}-6}\)
Bài 1: Tính:
\(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\sqrt{\dfrac{5}{12}-\dfrac{1}{\sqrt{6}}}\)
Bài 2: Rút gọn rồi tính:
a) A=\(\dfrac{a^4-4a^2+3}{a^4-12a^2+27},a=\sqrt{3}-\sqrt{2}\)
b) \(B=\dfrac{1}{\sqrt{h+2\sqrt{h-1}}}+\dfrac{1}{\sqrt{h-2\sqrt{h-1}}},h=3\)
c) \(C=\dfrac{\sqrt{2x+2\sqrt{x^2-4}}}{\sqrt{x^2-4}x+2},x=2\left(\sqrt{3}+1\right)\)
d) \(D=\left(\dfrac{3}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{3}{\sqrt{1-a^2}}+1\right),a=\dfrac{\sqrt{3}}{2+\sqrt{3}}\)
Mọi người giúp em với!!!!!!!!!!!!!!