Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Huyền Trang
Xem chi tiết
Vũ Thị Thu Hà
Xem chi tiết
thanh nguyen duy
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Akai Haruma
2 tháng 1 2021 lúc 17:52

Lời giải:

$A=5x^2+y^2+4xy-2x-2y+2020$

$=(4x^2+y^2+4xy)+x^2-2x-2y+2020$

$=(2x+y)^2-2(2x+y)+x^2+2x+2020$

$=(2x+y)^2-2(2x+y)+1+(x^2+2x+1)+2018$

$=(2x+y-1)^2+(x+1)^2+2018\geq 2018$

Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $2x+y-1=0$ và $x+1=0$

Hay $x=-1; y=3$

nguyen ngoc son
Xem chi tiết
Phạm Thị Hồng Hà
Xem chi tiết
Unruly Kid
15 tháng 8 2017 lúc 19:21

\(13x^2+y^2-4xy-16x+2y+2022\)

\(=\left(y-2x\right)^2+2\left(y-2x\right).1+1+9x^2-12x+4+2017\)

\(=\left(y-2x+1\right)^2+\left(3x-2\right)^2+2017\)

Vậy: Min là 2017 khi \(x=\dfrac{2}{3};y=\dfrac{1}{3}\)

trung
Xem chi tiết
Trúc Giang
23 tháng 6 2021 lúc 19:40

a)

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Daaus = xayr ra khi: x = 2

b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)

Dấu = xảy ra khi x = 3

c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu = xảy ra khi

2x = y và y = 2

=> x = 1 và y = 2

๖ۣۜDũ๖ۣۜN๖ۣۜG
23 tháng 6 2021 lúc 19:41

a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)

Dấu "=" <=> x = 2

b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)

Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)

c) \(4x^2+2y^2-4xy-4y+1\)

\(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)

\(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)

Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

vu duc nghia
Xem chi tiết
_Guiltykamikk_
9 tháng 8 2018 lúc 16:29

Đặt  \(K=4x^2+2y^2+4xy-16x-12y+5\)

\(K=\left(4x^2+4xy+y^2\right)+y^2-16x-12y+5\)

\(K=\left[\left(2x+y\right)^2-2\left(2x+y\right).4+16\right]+\left(y^2-4y+4\right)-15\)

\(K=\left(2x+y-4\right)^2+\left(y-2\right)^2-15\)

Mà  \(\left(2x+y-4\right)^2\ge0\forall x;y\)

      \(\left(y-2\right)^2\ge0\forall y\)

\(\Rightarrow K\ge-15\)

Dấu "=" xảy ra khi :  \(\hept{\begin{cases}2x+y-4=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy  \(K_{Min}=-15\Leftrightarrow\left(x;y\right)=\left(1;2\right)\)

White Silver
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 12 2021 lúc 0:57

\(A=2\left(x^2-2xy+y^2\right)+\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{8067}{4}\)

\(A=2\left(x-y\right)^2+\left(x-\dfrac{3}{2}\right)^2+\dfrac{8067}{4}\ge\dfrac{8067}{4}\)

\(A_{min}=\dfrac{8067}{4}\) khi \(x=y=\dfrac{3}{2}\)