Tìm giá trị nhỏ nhất của biểu thức:
\(A=13x^2+y^2+4xy-2y-16x+2015\)
a) Tìm giá trị nhỏ nhất của biểu thức :
A=13x2+y2+4xy-2y-16x+2015
b) Cho 2 số a,b thỏa mãn điều kiện a+b=1 ,CMR a3+b3+ab luôn lớn hơn hoặc bằng 1/2
tìm giá trị lớn nhát cửa biểu thức;
A=X^2+5Y^2-4xy+6x-14y+15
B=13x^2+y^2+4xy-2y-16x+2015
tìm giá trị nguyên của n để :
n^4-5n^3-3n^2+17n-17 chia hết cho n-5
Tìm GTNN của các biểu thức sau :
a, a^2 + ab +b^2 -3a -3b +2012
b, 13x^2 +y^2 +4xy -2y -16x +2015
c, (y -1 )^2 +(x -2 )^2 +(x+y+1)^2 +2016
tìm giá trị nhỏ nhất của biểu thức A=5x^2+y^2+4xy-2x-2y+2020
Lời giải:
$A=5x^2+y^2+4xy-2x-2y+2020$
$=(4x^2+y^2+4xy)+x^2-2x-2y+2020$
$=(2x+y)^2-2(2x+y)+x^2+2x+2020$
$=(2x+y)^2-2(2x+y)+1+(x^2+2x+1)+2018$
$=(2x+y-1)^2+(x+1)^2+2018\geq 2018$
Vậy GTNN của $A$ là $2018$. Giá trị này đạt tại $2x+y-1=0$ và $x+1=0$
Hay $x=-1; y=3$
tìm giá trị nhỏ nhất của biểu thức A=5x^2+y^2+4xy-2x-2y+2020
Tìm giá trị nhỏ nhất của:
13x2 + y2 - 4xy - 16x + 2y + 2022
\(13x^2+y^2-4xy-16x+2y+2022\)
\(=\left(y-2x\right)^2+2\left(y-2x\right).1+1+9x^2-12x+4+2017\)
\(=\left(y-2x+1\right)^2+\left(3x-2\right)^2+2017\)
Vậy: Min là 2017 khi \(x=\dfrac{2}{3};y=\dfrac{1}{3}\)
a, Tìm giá trị lớn nhất của biểu thức: A=4x-x^2+3
b. Tìm giá trị nhỏ nhất của biểu thức:B=4x^2-12x+15
c,Tìm giá trị nhỏ nhất của biểu thức:C=4x^2+2y^2-4xy-4y+1
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
tìm giá trị nhỏ nhất của đa thức sau:
4x^2+2y^2+4xy-16x-12y+5
Đặt \(K=4x^2+2y^2+4xy-16x-12y+5\)
\(K=\left(4x^2+4xy+y^2\right)+y^2-16x-12y+5\)
\(K=\left[\left(2x+y\right)^2-2\left(2x+y\right).4+16\right]+\left(y^2-4y+4\right)-15\)
\(K=\left(2x+y-4\right)^2+\left(y-2\right)^2-15\)
Mà \(\left(2x+y-4\right)^2\ge0\forall x;y\)
\(\left(y-2\right)^2\ge0\forall y\)
\(\Rightarrow K\ge-15\)
Dấu "=" xảy ra khi : \(\hept{\begin{cases}2x+y-4=0\\y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\)
Vậy \(K_{Min}=-15\Leftrightarrow\left(x;y\right)=\left(1;2\right)\)
Tìm giá trị lớn nhất, nhỏ nhất của biểu thức:
\(A=3x^2-4xy+2y^2-3x+2019\).
\(A=2\left(x^2-2xy+y^2\right)+\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{8067}{4}\)
\(A=2\left(x-y\right)^2+\left(x-\dfrac{3}{2}\right)^2+\dfrac{8067}{4}\ge\dfrac{8067}{4}\)
\(A_{min}=\dfrac{8067}{4}\) khi \(x=y=\dfrac{3}{2}\)