E= \(x^2-5x+6\)
Tìm gtnn gtln của E
Bài 6:Tìm GTLN,GTNN (nếu có) trong các biểu thức sau:
a)A=-4-x^2+6x
b)B=3x^2-5x+7
c)C=/x-3/(2-/x-3/)
d)D=(x-1)(x+5)(x^2+4x+5)
e)E=-x^2-4x-y^2+2y
a: =-x^2+6x-4
=-(x^2-6x+4)
=-(x^2-6x+9-5)
=-(x-3)^2+5<=5
Dấu = xảy ra khi x=3
b: =3(x^2-5/3x+7/3)
=3(x^2-2*x*5/6+25/36+59/36)
=3(x-5/6)^2+59/12>=59/12
Dấu = xảy ra khi x=5/6
c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)
\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)
\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)
Dấu = xảy ra khi x=4 hoặc x=2
a) tìm GTLN của E = (x^2 + xy + y^2) / (x^2 - xy + y^2)
( x , y khác 0 )
b) tìm GTNN của S = 5x^2 + 9y^2 - 12xy + 24x - 48y + 2014
Tìm GTNN/GTLN của :
E = 5x2 + y2 - 4xy + 8x - 6y + 3
Bài làm:
Ta có: \(E=5x^2+y^2-4xy+8x-6y+3\)
\(E=\left(4x^2-4xy+y^2\right)+\left(12x-6y\right)+9+\left(x^2-4x+4\right)-10\)
\(E=\left(2x-y\right)^2+6\left(2x-y\right)+9+\left(x-2\right)^2-10\)
\(E=\left(2x-y+3\right)^2+\left(x-2\right)^2-10\ge-10\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(2x-y+3\right)^2=0\\\left(x-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=7\end{cases}}\)
Vậy Min(E) = -10 khi x = 2, y = 7
a) Tìm GTLN của: A = \(-9x^2+24x+1\)
b) Tìm x thuộc Z để: B= \(\frac{2016}{x^2-5x+7}\) có GTNN
giúp e nhé mọi người chiều nay e học rồi
a) A=-9x2+24x+1=-9x2+24x-16+17
=-9x2+12x+12x-16+17
=-3x.(3x-4)+4.(3x-4)+17
=(3x-4)(-3x+4)+17
=-(3x-4)(3x-4)+17
=-(3x-4)2+17 \(\le\) 17 (với mọi x)
Dấu "=" xảy ra khi x=4/3
Vậy GTLN của A là 17 tại x=4/3
Câu b đề phải là tìm GTLN chứ nhỉ
Ta có: x2-5x+7= \(x^2-\frac{5}{2}x-\frac{5}{2}x+\frac{25}{4}+\frac{3}{4}=x.\left(x-\frac{5}{2}\right)-\frac{5}{2}.\left(x-\frac{5}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{5}{2}\right)\left(x-\frac{5}{2}\right)+\frac{3}{4}=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)(với mọi x)
=>\(B=\frac{2016}{x^2-5x+7}\le\frac{2016}{\frac{3}{4}}=2688\)(với mọi x)
Dấu "=" xảy ra khi x=5/2
Vậy GTLN của B là 2688 tại x=5/2
a, \(A=-\left(9x^2-24x-1\right)=-\left[\left(3x\right)^2-24x+16-17\right]=-\left[\left(3x\right)^2-2.3x.4+4^2-17\right]=-\left[\left(3x-4\right)^2-17\right]=-\left(3x-4\right)^2+17\le17\)
Dấu "=" xảy ra \(\Leftrightarrow3x-4=0\Leftrightarrow3x=4\Leftrightarrow x=\frac{4}{3}\)
\(\Rightarrow MaxA=17\Leftrightarrow x=\frac{4}{3}\)
b,Bài ni hình như là B max
\(Bmax\Leftrightarrow\frac{2016}{x^2-5x+7}max\Leftrightarrow x^2-5x+7min\)
\(x^2-5x+7=x^2-5x+6,25+0,75=x^2-5x+2,5^2+0,75=x^2-2.x.2,5+2,5^2+0,75=\left(x-2,5\right)^2+0,75\ge0,75\)
Dấu = xảy ra \(\Leftrightarrow x-2,5=0\Leftrightarrow x=2,5\)
\(\Rightarrow Bmax=\frac{2016}{0,75}=2688\Leftrightarrow x=2,5\)
tìm GTLN, GTNN Của -12 : (x2 - 5x + 6)
cho x≥−13x≥−13. tìm GTNN của E=5x−6√2x+7−4√3x−1+2
tìm gtln của -3x^2+5x+6; -4x^2+4x-1
tìm gtnn của x^2+4x+7;x^2-x+1
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
Tìm GTLN, GTNN của hàm số y=\(\sqrt{-x^2+5x-6}\) trên đoạn [-1;6]
Tìm GTNN, GTLN. a, A=-3x^2+6x-2 b, B=4-16x^2-8x c, C=2-5x^2-y^2-4xy+2x d, D=1/x^2+2x+3 e, E=-x^2+5x-7
a: \(A=-3\left(x^2-2x+\dfrac{2}{3}\right)\)
\(=-3\left(x^2-2x+1-\dfrac{1}{3}\right)\)
\(=-3\left(x-1\right)^2+1< =1\)
Dấu '=' xảy ra khi x=1
b: \(B=-\left(16x^2+8x-4\right)\)
\(=-\left(16x^2+8x+1-5\right)\)
\(=-\left(4x+1\right)^2+5< =5\)
Dấu '=' xảy ra khi x=-1/4
d: \(x^2+2x+3=\left(x+1\right)^2+2>=2\)
=>E<=1/2
Dấu '=' xảy ra khi x=-1