Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Thị Ngọc Anh
Xem chi tiết
Trung Nguyen
Xem chi tiết
vũ tiền châu
25 tháng 12 2017 lúc 20:21

ta có B=\(\frac{x^2-8x+1}{x^2+1}=\frac{-\left(x^2+1\right)+2\left(x^2-4x+4\right)}{x^2+1}=-1+\frac{2\left(x-2\right)^2}{x^2+1}\ge-1\)

=>b>= -1

dấu = xảy ra <=> x=2

Ta có =\(\frac{x^2-8x+7}{x^2+1}=\frac{9\left(x^2+1\right)-2\left(4x^2+4x+1\right)}{x^2+1}=9-\frac{2\left(2x+1\right)^2}{x^2+1}\le9\) 

=> B<=9, dấu = xảy ra <=> x=-1/2

Mai Anh Thư
Xem chi tiết
minhduc
14 tháng 9 2017 lúc 19:33

b, -(2x-1)2+10I2x-1I+2018

Vì :

(2x-1)2 >= 0  với mọi x

=> -(2x-1)2 =< -0 với mọi x    1

I2x-1I >= 0 với mọi x

=> 10I2x-1I >= 0 với mọi x    2

Từ (1) và (2) : 

=> -(2x-1)2+10I2x-1I =< -0 với mọi x

=> -(2x-1)2+10I2x-1I +2018 =< -0+2018  với mọi x

=> -(2x-1)2+10I2x-1I +2018 =< - 2018       với mọi x   

=> GTLN là -2018

Vậy GTLN là -2018 .

  

Minh Ngọc Đoàn
Xem chi tiết
Le Thi Khanh Huyen
3 tháng 7 2016 lúc 17:24

\(A=2x^2+8x-24\)

\(=2\left(x^2+4x-12\right)\)

\(=2\left[x^2+4x-4-8\right]\)

\(=2\left[\left(x-2\right)^2-8\right]\)

\(\left(x-2\right)^2\ge0\)

\(\Rightarrow\left(x-2\right)^2-8\ge-8\)

\(\Rightarrow2\left[\left(x-2\right)^2-8\right]\ge-16\)

Do đó GTNN của A là -16 khi \(x-2=0\Rightarrow x=2\)

Le Thi Khanh Huyen
3 tháng 7 2016 lúc 17:29

\(B=x^2-8x+5=x^2-8x+16-9\)

\(=x^2-2\left(4x\right)+4^2-9\)

\(=\left(x-4\right)^2-9\)

\(\left(x-4\right)^2\ge0\)

\(\Rightarrow\left(x-4\right)^2-9\ge-9\)

Do đó GTNN của B là -9 khi \(x-4=0\Rightarrow x=4\)

Trần Văn Thành
Xem chi tiết
Naa Hi
Xem chi tiết
Lấp La Lấp Lánh
2 tháng 9 2021 lúc 18:59

1) \(A=x^2+8x+15=\left(x^2+8x+16\right)-1=\left(x+4\right)^2-1\ge-1\)

\(minA=-1\Leftrightarrow x=-4\)

2) \(B=7x-x^2-5=-\left(x^2-7x+\dfrac{49}{4}\right)+\dfrac{29}{4}=-\left(x-\dfrac{7}{2}\right)^2+\dfrac{29}{4}\le\dfrac{29}{4}\)

\(maxB=\dfrac{29}{4}\Leftrightarrow x=\dfrac{7}{2}\)

Nguyễn Lê Phước Thịnh
2 tháng 9 2021 lúc 19:09

Ta có: \(A=x^2+8x+15\)

\(=x^2+8x+16-1\)

\(=\left(x+4\right)^2-1\ge-1\forall x\)

Dấu '=' xảy ra khi x=-4

Naa Hi
2 tháng 9 2021 lúc 19:13

Lớp 8 nhé, mình chọn nhầm

 

Trần Đình Hòa
Xem chi tiết
Đặng Quỳnh Ngân
25 tháng 7 2016 lúc 18:08

a) = 3(x2-2x+1) +1-3

GTNN = -2

B) tt

nghia
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 13:47

2:

a: =-(x^2-12x-20)

=-(x^2-12x+36-56)

=-(x-6)^2+56<=56

Dấu = xảy ra khi x=6

b: =-(x^2+6x-7)

=-(x^2+6x+9-16)

=-(x+3)^2+16<=16

Dấu = xảy ra khi x=-3

c: =-(x^2-x-1)

=-(x^2-x+1/4-5/4)

=-(x-1/2)^2+5/4<=5/4

Dấu = xảy ra khi x=1/2

HT.Phong (9A5)
27 tháng 7 2023 lúc 13:58

1) 

a) \(A=x^2+4x+17\)

\(A=x^2+4x+4+13\)

\(A=\left(x+2\right)^2+13\) 

Mà: \(\left(x+2\right)^2\ge0\) nên \(A=\left(x+2\right)^2+13\ge13\)

Dấu "=" xảy ra: \(\left(x+2\right)^2+13=13\Leftrightarrow x=-2\)

Vậy: \(A_{min}=13\) khi \(x=-2\)

b) \(B=x^2-8x+100\)

\(B=x^2-8x+16+84\)

\(B=\left(x-4\right)^2+84\)

Mà: \(\left(x-4\right)^2\ge0\) nên: \(A=\left(x-4\right)^2+84\ge84\)

Dấu "=" xảy ra: \(\left(x-4\right)^2+84=84\Leftrightarrow x=4\)

Vậy: \(B_{min}=84\) khi \(x=4\)

c) \(C=x^2+x+5\)

\(C=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)

\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)

Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)

Dấu "=" xảy ra: \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)

Vậy: \(A_{min}=\dfrac{19}{4}\) khi \(x=-\dfrac{1}{2}\)

nghia
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 21:23

1:

a: A=x^2+4x+4+13

=(x+2)^2+13>=13

Dấu = xảy ra khi x=-2

b; =x^2-8x+16+84

=(x-4)^2+84>=84

Dấu = xảy ra khi x=4

c: =x^2+x+1/4+19/4

=(x+1/2)^2+19/4>=19/4

Dấu = xảy ra khi x=-1/2