bài 1:Phân tích thành nhân tử:
a)x^2-3x+2
b)x^2+5x+6
c)x^2+5x+4
d)x^2-4x+3
e)x^2-x-6
Phân tích đa thức thành các nhân tử:
a)x^2-(a+b)x+ab
b)7x^3-3xyz-21x^2+9z
c)4x+4y-x^2(x+y)
d)y^2+y-x^2+x
e)4x^2-2x-y^2-y
f)9x^2-25y^2-6x+10y
Phân tích đa thức thành nhân tử
a)(5x-4)(4x-5)-(x-3)(x-2)-(5x-4)(3x-2)
b)(5x-4)(4x-5)+(5x-1)(x+4)+3(3x-2)(4-5x)
c)(5x-4)^2+(16-25x^2)+(5x-4)(3x+2)
d)x^4-x^3-x+1
e)x^6-x^4+2x^3+2x^2
a)x^2-(a+b)x+ab
= x^2 - ax - bx + ab
= (x^2 - ax) - (bx - ab)
= x(x-a) - b(x-a)
= (x-b)(x-a)
b)7x^3-3xyz-21x^2+9z
=
c)4x+4y-x^2(x+y)
= 4(x + y) - x^2(x+y)
= (4-x^2) (x+y)
= (2-x)(2+x)(x+y)
d) y^2+y-x^2+x
= (y^2 - x^2) + (x+y)
= (y-x)(y+x)+ (x+y)
= (y-x+1) (x+y)
e)4x^2-2x-y^2-y
= [(2x)^2 - y^2] - (2x +y)
= (2x-y)(2x+y) - (2x+y)
= (2x -y -1)(2x+y)
f)9x^2-25y^2-6x+10y
=
bài 1: phân tích đa thức thành nhân tử
a, x3-4x2-3x+8
b,x3+2x2-5x-6
c,x4-5x2+4
d,x3-7x+6
e, x4-3x3+x2+3x-2
c,x^4-5x^2+4=x^4-4x^2-x^2+4=(x^2-4)(x^2-1)=(x-1)(x+1)(x-2)(x+2)
e,x^4-3x^3+x^2+3x-2=x^4-x^3-2x^3+2x^2-x^2+x+2x-2=(x-1)(x^3-2x^2-x+2)
Đến đây lấy máy tính bấm Mode*3+1+>+3 rồi tìm nghiệm
Các câu khác cũng máy tính đi
Phân tích đa thức thành nhân tử a) x^2 -5x+6 b) 3x^2+9x -30 c)3x^2 -5x-2 d) x^3-7x-6 e) x^4+2x^2+6x-9 f) x^2-7xy+10y^2
Phân tích đa thức thành nhân tử
a) x^3+5x^2+3x-9
b)x^3+6x^2+11x+6
c)x^3+5x^2-3x-15
d)3x^3-4x^2+12x-16
e)2x^4-9x^2-5
. Bài 1: Phân tích đa thức thành nhân tử
a; A = x^3-2x^2-5x+6
b; B = x^4+5x^2+6
c; C = x^4-2x^3+2x-1
d; D = x^3+4x^2+5x+2
. Bài 2: Tìm x
a; x^3-9x^2+14x=0
b; x^3-5x^2+8x-4=0
c; x^4-2x^3+x^2=0
d; 2x^3+x^2-4x-2=0
bài 1: phân tích các đa thức sau thành nhân tử bằng 3 phương pháp đã học
a, 2x^2 + 4x + 2 - 2y^2
b, 2x - 2y - x^2 + 2xy - y^2
c, x^2 - y^2 - 2y - 1
d, x^2 - 4x - 2xy - 4y + y^2
bài 2 : phân tích các đa thức sau thành nhân tử bằng các phương pháp đã học
a,x^2 - 3x + 2
b, x^2 + 5x +6
c, x^2 + 6x - 6
d,x^2 -x -2
bài 3, tìm x biết
5x(x-1) = x - 1
1
a, 2x2+4x+2-2y2 = 2(x2+2x+1-y2)= 2[(x+1)2-y2 ] = 2(x-y+1)(x+y+1)
b, 2x - 2y - x2 + 2xy - y2= 2(x -y) - (x2 - 2xy + y2) = 2(x-y)-(x-y)2=(x-y)(2-x+y)
c, x2-y2-2y-1=x2-(y2+2y+1)=x2-(y+1)2=(x-y-1)(x+y+1)
d, x2-4x-2xy-4y+y2= x2-2xy+y2-4x-4y=(x-y)
2.
a, x2-3x+2=x2-x-2x+2=x(x-1)-2(x-1)=(x-2)(x-1)
b, x2+5x+6=x2+2x+3x+6=x(x+2)+3(x+2)=(x+3)(x+2)
c, x2+6x-6=
a: x^3-7x-6
=x^3-x-6x-6
=x(x-1)(x+1)-6(x+1)
=(x+1)(x^2-x-6)
=(x-3)(x+2)(x+1)
b: =2x^3+x^2-2x^2-x+6x+3
=x^2(2x+1)-x(2x+1)+3(2x+1)
=(2x+1)(x^2-x+3)
c: =2x^3-3x^2-2x^2+3x+2x-3
=x^2(2x-3)-x(2x-3)+(2x-3)
=(2x-3)(x^2-x+1)
d: =2x^3+x^2+2x^2+x+2x+1
=(2x+1)(x^2+x+1)
e: =3x^3+x^2-3x^2-x+6x+2
=(3x+1)(x^2-x+2)
f: =27x^3-9x^2-18x^2+6x+12x-4
=(3x-1)(9x^2-6x+4)
a) \(x^3-7x-6\)
\(=x^3-x-6x-6\)
\(=\left(x^3-x\right)-\left(6x+6\right)\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-x-6\right)\)
b) \(2x^3-x^2+5x+3\)
\(=2x^3+x^2-2x^2-x+6x+3\)
\(=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(x^2-x+3\right)\left(2x+1\right)\)
c) \(2x^3-5x^2+5x+1\)
\(=2x^3-3x^2-2x^2+3x+2x-3\)
\(=\left(2x^3-3x^2\right)-\left(2x^2-3x\right)+\left(2x-3\right)\)
\(=x^2\left(2x-3\right)-x\left(2x-3\right)+\left(2x-3\right)\)
\(=\left(x^2-x+1\right)\left(2x-3\right)\)
d) \(2x^3+3x^2+3x+1\)
\(=2x^3+x^2+2x^2+x+2x+1\)
\(=\left(2x^3+x^2\right)+\left(2x^2+x\right)+\left(2x+1\right)\)
\(=x^2\left(2x+1\right)+x\left(2x+1\right)+\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2+x+1\right)\)
e) \(3x^3-2x^2+5x+2\)
\(=3x^3+x^2-3x^2-x+6x+2\)
\(=\left(3x^3+x^2\right)-\left(3x^2+x\right)+\left(6x+2\right)\)
\(=x^2\left(3x+1\right)-x\left(3x+1\right)+2\left(3x+1\right)\)
\(=\left(3x-1\right)\left(x^2-x+2\right)\)
f) \(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=\left(27x^3-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)
\(=9x^2\left(3x-1\right)-6x\left(3x-1\right)+4\left(3x-1\right)\)
\(=\left(3x-1\right)\left(9x^2-6x+4\right)\)
Bài 1 : Phân tích đa thức thành nhân tử
a) 5x^2y-20xy^2
b) 1-8x+16x^2-y^2
c) 4x-4-x^2
d) x^3-2x^2+x-xy^2
e)27-3x^2
f) 2x^2+4x+2-2y^2
Bài 2: tìm x, biết
a) x^2(x-2023)-2023+x=0
b) -x(x-4)+(2x^3-4x^2-9x):x=0
c) x^2+2x-3x-6=0
d) 3x(x-10)-2x+20=0
Bài 1
a) 5x²y - 20xy²
= 5xy(x - 4y)
b) 1 - 8x + 16x² - y²
= (1 - 8x + 16x²) - y²
= (1 - 4x)² - y²
= (1 - 4x - y)(1 - 4x + y)
c) 4x - 4 - x²
= -(x² - 4x + 4)
= -(x - 2)²
d) x³ - 2x² + x - xy²
= x(x² - 2x + 1 - y²)
= x[(x² - 2x+ 1) - y²]
= x[(x - 1)² - y²]
= x(x - 1 - y)(x - 1 + y)
= x(x - y - 1)(x + y - 1)
e) 27 - 3x²
= 3(9 - x²)
= 3(3 - x)(3 + x)
f) 2x² + 4x + 2 - 2y²
= 2(x² + 2x + 1 - y²)
= 2[(x² + 2x + 1) - y²]
= 2[(x + 1)² - y²]
= 2(x + 1 - y)(x + 1 + y)
= 2(x - y + 1)(x + y + 1)
Bài 2:
a: \(x^2\left(x-2023\right)+x-2023=0\)
=>\(\left(x-2023\right)\left(x^2+1\right)=0\)
mà \(x^2+1>=1>0\forall x\)
nên x-2023=0
=>x=2023
b:
ĐKXĐ: x<>0
\(-x\left(x-4\right)+\left(2x^3-4x^2-9x\right):x=0\)
=>\(-x\left(x-4\right)+2x^2-4x-9=0\)
=>\(-x^2+4x+2x^2-4x-9=0\)
=>\(x^2-9=0\)
=>(x-3)(x+3)=0
=>\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
c: \(x^2+2x-3x-6=0\)
=>\(\left(x^2+2x\right)-\left(3x+6\right)=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>(x+2)(x-3)=0
=>\(\left[{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
d: 3x(x-10)-2x+20=0
=>\(3x\left(x-10\right)-\left(2x-20\right)=0\)
=>\(3x\left(x-10\right)-2\left(x-10\right)=0\)
=>\(\left(x-10\right)\left(3x-2\right)=0\)
=>\(\left[{}\begin{matrix}x-10=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=10\end{matrix}\right.\)
Câu 1:
a: \(5x^2y-20xy^2\)
\(=5xy\cdot x-5xy\cdot4y\)
\(=5xy\left(x-4y\right)\)
b: \(1-8x+16x^2-y^2\)
\(=\left(16x^2-8x+1\right)-y^2\)
\(=\left(4x-1\right)^2-y^2\)
\(=\left(4x-1-y\right)\left(4x-1+y\right)\)
c: \(4x-4-x^2\)
\(=-\left(x^2-4x+4\right)\)
\(=-\left(x-2\right)^2\)
d: \(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x^2-2x+1\right)-y^2\right]\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)
e: \(27-3x^2\)
\(=3\left(9-x^2\right)\)
\(=3\left(3-x\right)\left(3+x\right)\)
f: \(2x^2+4x+2-2y^2\)
\(=2\left(x^2+2x+1-y^2\right)\)
\(=2\left[\left(x^2+2x+1\right)-y^2\right]\)
\(=2\left[\left(x+1\right)^2-y^2\right]\)
\(=2\left(x+1+y\right)\left(x+1-y\right)\)
Bài 2
a) x²(x - 2023) - 2023 + x = 0
x²(x - 2023) - (x - 2023) = 0
(x - 2023)(x² - 1) = 0
x - 2023 = 0 hoặc x² - 1 = 0
*) x - 2023 = 0
x = 2023
*) x² - 1 = 0
x² = 1
x = 1 hoặc x = -1
Vậy x = -1; x = 1; x = 2023
b) -x(x - 4) + (2x³ - 4x² - 9x) : x = 0
-x² + 4x + 2x² - 4x - 9 = 0
x² - 9 = 0
x² = 9
x = 3 hoặc x = -3
Vậy x = 3; x = -3
c) x² + 2x - 3x - 6 = 0
(x² + 2x) - (3x + 6) = 0
x(x + 2) - 3(x + 2) = 0
(x + 2)(x - 3) = 0
x + 2 = 0 hoặc x - 3 = 0
*) x + 2 = 0
x = -2
*) x - 3 = 0
x = 3
Vậy x = -2; x = 3
d) 3x(x - 10) - 2x + 20 = 0
3x(x - 10) - (2x - 20) = 0
3x(x - 10) - 2(x - 10) = 0
(x - 10)(3x - 2) = 0
x - 10 = 0 hoặc 3x - 2 = 0
*) x - 10 = 0
x = 10
*) 3x - 2 = 0
3x = 2
x = 2/3
Vậy x = 2/3; x = 10
Phân tích thành nhân tử
a) x^2+5x-6
b) 5x^2+5xy-x-y
c) 7x-6x^2-2
d) x^2+4x+3
e) 2x^2+3x-5
f) 16x-5x^2-3
giải chi tiết
nhiều quá, các bn ngại làm, chia nhỏ ra,mk làm cho 2 câu
a) x2 +5x -6 = x2 -x +x + 5x -6
= x2 -x +6x -6
= x( x-1) + 6(x-1) = (x-1)(x+6)
b) 5x2 +5xy -x-y = 5x(x+y) -(x+y)
= (x+y)(5x-1)
e) \(2x^2+3x-5\)
\(=2x^2+5x-2x-5\)
\(=x\cdot\left(2x+5\right)-\left(2x+5\right)\)
\(=\left(x-1\right)\left(2x+5\right)\)
f) \(16x-5x^2-3\)
\(=-5x^2+16x-3\)
\(=-5x^2+15+x-3\)
\(=-5\cdot\left(x-3\right)+x-3\)
\(=\left(-5x+1\right)\left(x-3\right)\)
c)7x-\(6x^2\)-2
=3x + 4x - \(6x^2\) - 2
=(3x - \(6x^2\)) - (2 - 4x)
= 3x(1 - 2x) - 2(1 - 2x)
=(1-2x)(3x-2)
Phân tích đa thức thành nhân tử
A= 6x^4-5x^3+4x^2+2x-1
B=4x^4+4x^3+5x^2+8x-6
C=x^4+x^3-5x^2+x-6
A = 6x4 - 5x3 + 4x2 + 2x - 1
= 6x4 + 3x3 - 8x3 - 4x2 + 8x2 + 4x - 2x - 1
= 3x3. ( 2x + 1 ) - 4x2 ( 2x + 1 ) + 4x ( 2x + 1 ) - ( 2x + 1 )
= ( 2x + 1 ) ( 3x3 - 4x2 + 4x - 1 )
= ( 2x + 1 ) ( 3x3 - x2 - 3x2 + x + 3x - 1 )
= ( 2x + 1 ) [ x2 ( 3x - 1 ) - x ( 3x - 1 ) + ( 3x - 1 ) ]
= ( 2x + 1 ) ( 3x - 1 ) ( x2 - x + 1 )
B = 4x4 + 4x3 + 5x2 + 8x - 6
= 4x4 - 2x3 + 6x3 - 3x2 + 8x2 - 4x + 12x - 6
= 2x3 ( 2x - 1 ) + 3x2 ( 2x - 1 ) + 4x ( 2x - 1 ) + 6 ( 2x - 1 )
= ( 2x - 1 ) ( 2x3 + 3x2 + 4x + 6 )
= ( 2x - 1 ) [ x2 ( 2x + 3 ) + 2 ( 2x + 3 ) ]
= ( 2x - 1 ) ( 2x + 3 ) ( x2 + 2 )
C = x4 + x3 - 5x2 + x - 6
= x4 - 2x3 + 3x3 - 6x2 + x2 - 2x + 3x - 6
= x3 ( x - 2 ) + 3x2 ( x - 2 ) + x ( x - 2 ) + 3 ( x - 2 )
= ( x - 2 ) ( x3 + 3x2 + x + 3 )
= ( x - 2 ) [ x2 ( x + 3 ) + ( x + 3 ) ]
= ( x - 2 ) ( x + 3 ) ( x2 + 1 )