Biết 2019z-2020y/2018=2020x-2018z/2019=2018y-2019x/2010. Chứng minh 2018/x=2019/y=2020/z
F(x)=x^2019-2020x^2018+2020x^2017-2020x^2016+...+2020x-2020 tại x= 2019
B=x^2020 -2019 x^2019 - x^2018 - 2019 x^2017 - ...-2019x-2020 với x=2020
cho p(x)=x^2020-2019x^2019+x^2018-2019x^2017+...+x^2019 tinh P(2019)
\(x^{2019}-2020x^{2018}+2020x^{2017}-2020x^{2016}+...+2020x-2020\)
tại x=2019
\(x^{2019}-2020x^{2018}+2020x^{2017}-2020x^{2016}+...+2020x-2020\)
tại x=2019
\(x^{2019}-2020x^{2018}+2020x^{2017}-2020x^{2016}+...+2020x-2020\)
\(=x^{2019}-2019x^{2018}-x^{2018}+2019x^{2017}+x^{2017}\)
\(-2019x^{2016}-x^{2016}+...+2019x+x-2020\)
\(=x^{2018}\left(x-2019\right)-x^{2017}\left(x-2019\right)+x^{2016}\left(x-2019\right)\)
\(+...-x\left(x-2019\right)+\left(x-2019\right)-1\)
\(=-1\)
Cho dãy tỉ số bằng nhau (Các mẫu số đều khác 0):
\(\dfrac{y+z+t-2020x}{x}=\dfrac{z+t+x-2020y}{y}=\dfrac{t+x+y-2020z}{z}=\dfrac{x+y+z-2020t}{t}\)
Biết x+y+z+t = 2020. Tính A = 2019x - 2020y + 2021z - 2022t
\(\dfrac{y+z+t-2020x}{x}=\dfrac{z+t+x-2020y}{y}=\dfrac{t+x+y-2020z}{z}=\dfrac{x+y+z-2020t}{t}=\dfrac{-2017\left(x+y+z+t\right)}{x+y+z+t}=-2017\\ \Leftrightarrow\left\{{}\begin{matrix}y+z+t-2020x=-2017x\\z+t+x-2020y=-2017y\\t+x+y-2020z=-2017z\\x+y+z-2020t=-2017t\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+z+t=2x\\x+y+z+t=2y\\x+y+z+t=2z\\x+y+z+t=2t\end{matrix}\right.\\ \Leftrightarrow x=y=z=t=\dfrac{x+y+z+t}{2}=1010\\ \Leftrightarrow A=1010\left(2019-2020+2021-2022\right)=1010\left(-2\right)=-2020\)
Thu gọn và tính giá trị biểu thức D=x^2020+2019.x^2019+2019.x^2018+...+2019x+1 tại x=2020
Ta có: \(2020=x\Rightarrow2019=x-1\)
Thay vào ta được:
\(D=x^{2020}+\left(x-1\right)^{2019}+\left(x-1\right)^{2018}+...+\left(x-1\right)x+1\)
\(D=x^{2020}+x^{2020}-x^{2019}+x^{2019}-x^{2018}+...+x^2-x+1\)
\(D=2x^{2020}-x+1\)
\(D=2\cdot2020^{2020}-2020+1\)
Bạn xem lại đề nhé
x = 2020 => 2019 = x - 1
Thế vào D ta được
D = x2020 + ( x - 1 )x2019 + ( x - 1 )x2018 + ... + ( x - 1 )x + 1
= x2020 + x2020 - x2019 + x2019 - x2018 + ... + x2 - x + 1
= 2x2020 - x + 1
= 2.20202020 - 2020 + 1
= 2.20202020 - 2019 ( chắc đề sai (: )
giải pt \(\sqrt{2020x-2019}+2019x+2019=\sqrt{2019x-2020}\)
ĐKXĐ: \(x\ge\dfrac{2020}{2019}>0\)
\(\Leftrightarrow\sqrt{2020x-2019}+\sqrt{2019x-2020}+2019\left(x+1\right)=0\)
\(\Leftrightarrow\dfrac{x+1}{\sqrt{2020x-2019}+\sqrt{2019x-2020}}+2019\left(x+1\right)=0\)
Do \(x>0\) nên hiển nhiên vế trái dương.
Pt vô nghiệm
ĐKXĐ: ⇔x+1√2020x−2019+√2019x−2020+2019(x+1)=0⇔x+12020x−2019+2019x−2020+2019(x+1)=0
Do x>0x>0 nên hiển nhiên vế trái dương.
Pt vô nghiệm
tìm giá trị của \(x\): \(x^{2019}-2020x^{2018}+2020x^{2017}-2020x^{2016}+...+2020x-2020\) tại \(x=2019\)