\(\dfrac{y+z+t-2020x}{x}=\dfrac{z+t+x-2020y}{y}=\dfrac{t+x+y-2020z}{z}=\dfrac{x+y+z-2020t}{t}=\dfrac{-2017\left(x+y+z+t\right)}{x+y+z+t}=-2017\\ \Leftrightarrow\left\{{}\begin{matrix}y+z+t-2020x=-2017x\\z+t+x-2020y=-2017y\\t+x+y-2020z=-2017z\\x+y+z-2020t=-2017t\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x+y+z+t=2x\\x+y+z+t=2y\\x+y+z+t=2z\\x+y+z+t=2t\end{matrix}\right.\\ \Leftrightarrow x=y=z=t=\dfrac{x+y+z+t}{2}=1010\\ \Leftrightarrow A=1010\left(2019-2020+2021-2022\right)=1010\left(-2\right)=-2020\)