Cho M = \(\dfrac{x}{x+y+z}\)+\(\dfrac{y}{y+z+t}\)+\(\dfrac{z}{z+t+x}\)+\(\dfrac{t}{t+x+y}\) với x, y, z, t ϵ N*
CMR: M10 < 1025
cho biểu thức M=x/(x+y+z) +y/(x+y+t) +z/(y+z+t) +t/(x+z+t) với x,y,z,t là các số tự nhiên khác 0. Chứng minh M10 <1025
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Cho biểu thức \(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\) tính giá trị biểu thức P biết \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
cho M=(x/x+y+z)+(y/x+y+t)+(z/y+z+t)+(t/x+z+t) với x,y,z là các số tự nhiên khác 0
chứng minh M10<1025
Cho dãy tỉ số bằng nhau:\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)
Chứng minh rằng : \(p=\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\) có giá trị nguyên.