Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thế Anh
Xem chi tiết
Phạm Thế Anh
28 tháng 5 2020 lúc 0:45

Không ai trả lời luôn

Khách vãng lai đã xóa
hehe boii
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 2 2023 lúc 21:14

\(A=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-b\right)}=\dfrac{2a\left(x-1\right)^2}{5b\left(1-b\right)}\)

\(B=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}=x+y-z\)

Ru Bakaa
Xem chi tiết
Nguyen My Van
11 tháng 5 2022 lúc 10:22

\(a,\dfrac{2ax^2-4ax+2a}{5b-5bx^2}\)

\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)

\(=\dfrac{2a\left(x-1^2\right)}{5b\left(x-1\right)\left(1+x\right)}\)

\(=\dfrac{2a\left(x-1\right)}{5b\left(x+1\right)}\)

\(b,\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)

\(=\dfrac{\left(x+y-z\right)\left(x+y+z\right)}{x+y+z}=x+y-z\)

Nguyễn Thu Thủy
Xem chi tiết
Cô nàng Thiên Yết
Xem chi tiết

dai vcl

Khách vãng lai đã xóa

\(1,\frac{x^6+2x^3y^3+y^6}{x^7-xy^6}=\frac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}=\frac{\left(x^3+y^3\right)^2}{x\left(x^3-y^3\right)\left(x^3+y^3\right)}=\frac{x^3+y^3}{x\left(x^3-y^3\right)}\)

\(2,=\frac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\frac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a+c-b\right)}=\frac{a+b-c}{a+c-b}\)

pt thành nhân tử là ra

Khách vãng lai đã xóa
nguyễn ngọc minh ánh
Xem chi tiết
Sultanate of Mawadi
29 tháng 10 2020 lúc 13:49

\(\frac{2ax^2-4ax+2a}{5b-5bx^2}\)

\(=-\frac{2a\left(x-1\right)^2}{5b\left(x+1\right)\left(x-1\right)}\)

\(=-\frac{2a\left(x-1\right)}{5b\left(x+1\right)}\)

Khách vãng lai đã xóa
yunn min
Xem chi tiết
Nấm Độc
Xem chi tiết
Nguyễn Thị Quỳnh Trang
6 tháng 12 2016 lúc 19:39

B=\(\frac{5\left(x-y\right)-3\left(x-y\right)}{10\left(x-y\right)}\)

B=\(\frac{\left(x-y\right)\left(5-3\right)}{10\left(x-y\right)}\)

B= \(\frac{\left(x-y\right)2}{10\left(x-y\right)}\)

B= 5

vậy B=5

Thơ Nụ =))
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 1 2024 lúc 21:05

\(\dfrac{2a\cdot x^2-4ax+2a}{5b-5bx^2}\)

\(=\dfrac{2a\left(x^2-2x+1\right)}{5b\left(1-x^2\right)}\)

\(=\dfrac{-2a\left(x-1\right)^2}{5b\left(x-1\right)\left(x+1\right)}=\dfrac{-2a\left(x-1\right)}{5b\left(x+1\right)}\)

\(\dfrac{4x^2-4xy}{5x^3-5x^2y}\)

\(=\dfrac{4x\cdot x-4x\cdot y}{5x^2\cdot x-5x^2\cdot y}\)

\(=\dfrac{4x\left(x-y\right)}{5x^2\left(x-y\right)}=\dfrac{4}{5x}\)

\(\dfrac{\left(x+y\right)^2-z^2}{x+y+z}\)

\(=\dfrac{\left(x+y+z\right)\left(x+y-z\right)}{x+y+z}\)

=x+y-z

\(\dfrac{x^6+2x^3y^3+y^6}{x^7-xy^6}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^6-y^6\right)}\)

\(=\dfrac{\left(x^3+y^3\right)^2}{x\left(x^3+y^3\right)\left(x^3-y^3\right)}=\dfrac{x^3+y^3}{x\left(x^3-y^3\right)}\)