CMR tích của 8 số tự nhiên liên tiếp luôn chia hết cho 128 .
CMR tích của 8 số tự nhiên liên tiếp luôn chia hết cho 125
CMR:
a) Tích của 2 số chẵn liên tiếp luôn chia hết cho 8.
b) Tổng của 2 số chẵn liên tiếp không chia hết cho 4.
c) Tổng của năm số tự nhiên liên tiếp chia hết cho 5.
a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm
c)Gọi 5 số tự nhiên liên tiếp là a,a+1,a+2,a+3,a+4
Ta có: a+a+1+a+2+a+3+a+4 =(a+a+a+a+a)+(1+2+3+4) =5.a+10 =5.(a+2) chia hết cho 5
Vậy tổng của 5 số tự nhiên liên tiếp chia hết cho 5
a/CMR tích của 2 số tự nhiên liên tiếp chia hết cho 2
b/CMR tích của 3 số tự nhiên liên tiếp chia hết cho 6
c/CMR tích của 4 số tự nhiên liên tiếp chia hết cho 24
d/CMR tích của 5 số tự nhiên liên tiếp chia hết cho 120
đâu phải tích của 2 số đều chia hết cho 2 đâu
sao tích 2 số tự nhiên lại chia hết cho 2 . VD 3*5 =15 đâu chia hết cho 2. đúng ra phải là 2 số tự nhiên liên tiếp chứ!!!
a) CMR tích của 4 số tự nhiên liên tiếp thì chia hết cho 12
b) CMR tích của 5 số tự nhiên liên tiếp thì chia hết cho 60
c) CMR tích của 4 số tự nhiên liên tiếp thì chia hết cho 24
chứng tỏ rằng :
a) tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
b) tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
c) tích của hai số tự nhiên liên tiếp thì chia hết cho 2
d) tích của ba số tự nhiên liên tiếp luôn chia hết cho 3
cứu mình
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a: Gọi ba số liên tiếp là a;a+1;a+2
a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
b: Gọi 4 số liên tiếp là a;a+1;a+2;a+3
a+a+1+a+2+a+3
=4a+6
=4a+4+2
=4(a+1)+2 ko chia hết cho 4
c: Hai số liên tiếp thì luôn có 1 số chẵn, 1 số lẻ
=>Hai số liên tiếp khi nhân với nhau sẽ chia hết cho 2
d: Ba số liên tiếp thì chắc chắn sẽ có 1 số chia hết cho 3
=>Ba số liên tiếp khi nhân với nhau sẽ chia hết cho 3
Chứng minh rằng:
a) Tích của ba số tự nhiên liên tiếp luôn chia hết cho 3.
b) Tích của bốn số tự nhiên liên tiếp luôn chia hết cho 4
Chứng minh rằng tích của 8 số tự nhiên liên tiếp chia hết cho 128
Gọi 8 số nguyên liên tiếp lần lượt là : 2x - 4 , 2x - 3 , 2x - 2 , 2x - 1 , 2x , 2x + 1 , 2x + 2 , 2x + 3 .
=> Tích của 8 số tự nhiên liên tiếp là :
( 2x - 4 ) . ( 2x - 3 ) . ( 2x - 2 ) . ( 2x - 1 ) . 2x . ( 2x + 1 ) . ( 2x + 2 ) . ( 2x + 3 )
= 2 ( x - 2 ) . ( 2x - 3 ) . 2 ( x - 1 ) . ( 2x - 1 ) . 2x . ( 2x + 1 ) . 2 ( x + 1 ) . ( 2x + 3 )
= 16 ( x - 2 ) ( x - 1 ) x ( x + 1 ) . ( 2x - 3 ) ( 2x - 1 ) ( 2x + 1 ) . ( 2x + 3 ) chia hết cho 16
=> ( x - 2 ) ( x - 1 ) x ( x + 1 ) là tích 4 số nguyên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 4 . Do đó ( x - 2 ) ( x - 1 ) x ( x + 1 ) chia hết cho 8 .
Vậy ( 2x - 4 ) . ( 2x - 3 ) . ( 2x - 2 ) . ( 2x - 1 ) . 2x . ( 2x + 1 ) . ( 2x + 2 ) . ( 2x + 3 ) chia hết cho 16 . 8 = 128
Gọi 8 số nguyên liên tiếp lần lượt là 2x – 4, 2x – 3, 2x – 2, 2x – 1, 2x, 2x +1, 2x +2, 2x +3.
Thì tích tám số tự nhiên liên tiếp là:
(2x – 4).(2x – 3).(2x – 2).(2x – 1). 2x .(2x +1).(2x +2).(2x +3)
= 2(x – 2). (2x – 3). 2(x – 1). (2x – 1). 2x. (2x +1) .2(x +1) .(2x +3)
= 16 (x – 2)(x – 1)x(x + 1).(2x – 3)(2x – 1)(2x +1) .(2x +3) chia hết cho 16
(x – 2)(x – 1)x(x + 1) là tích 4 số nguyên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 4. do đó (x – 2)(x – 1)x(x + 1) chia hết cho 2.4 = 8
Vậy (2x – 4).(2x – 3).(2x – 2).(2x – 1). 2x .(2x +1).(2x +2).(2x +3) chia hết cho 16.8 = 128
Tám số nguyên liên tiếp sẽ có 4 số chẵn liên tiếp giả sử là :
2k ( 2k+2 ) ( 2k+4 ) ( 2k+6 ) = 16k ( k+1 ) ( k+2 ) ( k+3 ) <1>
Nhận thấy k ( k+1 ) ( k+2 ) ( k+3 ) k ( k+1 ) ( k+2 ) ( k+3 ) có 2 số chẵn liên tiếp, gọi đó là 4p ( 4p + 2 ) 4p ( 4p+2 ) chia hết cho 88
Do đó k ( k+1 ) ( k+2 ) ( k+3 ) k ( k+1 ) ( k+2 ) ( k+3 ) chia hết cho 8 <2>
Từ <1> <2> có đpcm
_Hok tốt_
CMR tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3; còn 4 số tự nhiên liên tiếp thì không chia hết cho 4
Vì là 3 số tự nhiên liên tiếp nên chúng xẽ có dạng n;n+1;n+2
mà n+n+1+n+2=n+n+n+1+2=3n+3=3*(n+1) chia hết cho 3=> n+n+1+n+2 chia hết cho 3(đpcm)
Vì là 4 số tự nhiên liên tiếp nên chúng xẽ có dạng n;n+1;n+2;n+3
mà n+n+1+n+2+n+3=n+n+n+n+1+2+3=4n+6
Vì 4n chia hết cho 4;6 không chia hết cho 4
=>4n+6 không chia hết cho 4=>n+n+1+n+2+n+3 không chia hết cho 4(đpcm)
cmr tích 5 số tự nhiên liên tiếp thì luôn chia hết cho 120
Giải:
Gọi 5 số tự nhiên đó lần lượt là: \(a;a+1;a+2;a+3;a+4\) với \(a\in N\)
Ta có:;
\(a.\left(a+1\right).\left(a+2\right).\left(a+3\right).\left(a+4\right)\)
\(=5a.\left(1.2.3.4\right)\)
\(=5a.24\)
\(=120a⋮120\)
Vậy tích 5 số tự nhiên liên tiếp thì luôn chia hết cho 120