giải hệ phương trình:
\(\left\{{}\begin{matrix}2xy+3x+4y=-2\\x^2+4x+4y^2+12y=4\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}2xy+3x+4y+6=0\\x^2+4y^2+4x+12y-3=0\end{matrix}\right.\)
Bài 2: Giải các hệ phương trình sau bằng phương pháp thế
a) \(\left\{{}\begin{matrix}4x+y=2\\8x+3y=5\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}3x-2y=11\\4x-5y=3\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}5x-4y=3\\2x+y=4\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}3x-y=5\\5x+2y=28\end{matrix}\right.\)
e) \(\left\{{}\begin{matrix}3x+5y=1\\2x-y=-8\end{matrix}\right.\)
f) \(\left\{{}\begin{matrix}x-2y=1\\2x-y=4\end{matrix}\right.\)
a: =>8x+2y=4 và 8x+3y=5
=>y=1 và 4x=2-1=1
=>x=1/4 và y=1
b: 3x-2y=11 và 4x-5y=3
=>12x-8y=44 và 12x-15y=9
=>7y=35 và 3x-2y=11
=>y=5 và 3x=11+2*y=11+2*5=21
=>x=7 và y=5
c: 5x-4y=3 và 2x+y=4
=>5x-4y=3 và 8x+4y=16
=>13x=19 và 2x+y=4
=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13
d: 3x-y=5 và 5x+2y=28
=>6x-2y=10 và 5x+2y=28
=>11x=38 và 3x-y=5
=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11
a: =>8x+2y=4 và 8x+3y=5
=>y=1 và 4x=2-1=1
=>x=1/4 và y=1
b: 3x-2y=11 và 4x-5y=3
=>12x-8y=44 và 12x-15y=9
=>7y=35 và 3x-2y=11
=>y=5 và 3x=11+2*y=11+2*5=21
=>x=7 và y=5
c: 5x-4y=3 và 2x+y=4
=>5x-4y=3 và 8x+4y=16
=>13x=19 và 2x+y=4
=>x=19/13 và y=4-2x=4-38/13=52/13-38/13=14/13
d: 3x-y=5 và 5x+2y=28
=>6x-2y=10 và 5x+2y=28
=>11x=38 và 3x-y=5
=>x=38/11 và y=3x-5=104/11-5=104/11-55/11=49/11
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^3+4y-y^3-16x=0\\y^2=5x^2+4\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}4x^2+y^4-4xy^3=1\\2x^2+y^2-2xy=1\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^3-y^3=9\\x^2+2y^2=x-4y\end{matrix}\right.\)
a.
\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)
Nhân vế:
\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)
\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)
\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)
Thế vào \(y^2=5x^2+4...\)
b. Đề bài không hợp lý ở \(4x^2\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)
Trừ vế:
\(x^3-y^3-3x^2-6y^2=9-3x+12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\)
\(\Leftrightarrow y=x-3\)
Thế vào \(x^2=2y^2=x-4y\) ...
b.
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+y^4-4xy^3=1\\4x^2+2y^2-4xy=2\end{matrix}\right.\)
\(\Rightarrow y^4-2y^2-4xy^3+4xy=-1\)
\(\Leftrightarrow\left(y^2-1\right)^2-4xy\left(y^2-1\right)=0\)
\(\Leftrightarrow\left(y^2-1\right)\left(y^2-1-4xy\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\\x=\dfrac{y^2-1}{4y}\end{matrix}\right.\)
Thế vào \(2x^2+y^2-2xy=1\) ...
Với \(x=\dfrac{y^2-1}{4y}\) ta được:
\(2\left(\dfrac{y^2-1}{4y}\right)^2+y^2-2\left(\dfrac{y^2-1}{4y}\right)y=1\)
\(\Leftrightarrow5y^4-6y^2+1=0\)
Giải phương trình:
1. \(\left\{{}\begin{matrix}4x-2y=3\\6x-3y=5\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}2x-3y=5\\4x+6y=10\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}3x-4y+2=0\\5x+2y=14\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}2x+5y=3\\3x-2y=14\end{matrix}\right.\)
1) \(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}3x-2y=4\\7x=14\end{matrix}\right.< =>\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}2x+3y=5\\4x+6y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\4x=6y=10\end{matrix}\right.\)
=> Hệ có vô số nghiệm.
3)\(\left\{{}\begin{matrix}3x-4y=-2\\10x+4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}3x-4y=-2\\13x=26\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)
4)\(\left\{{}\begin{matrix}6x+15y=9\\6x-4y=28\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}6x+15y=9\\19y=19\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-1\end{matrix}\right.\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(x+y-3\right)^3=4y^3\left(x^2y^2+xy+\frac{45}{4}\right)\\x+4y-3=2xy^2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+7y=\left(x+y\right)^2+x^2y+7x+4\\3x^2+y^2+8y+4=8x\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}2x+5y=xy+2\\x^2+4y+21=y^2+10x\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}2xy^2-8y+3x^2=0\\4y^2+x^2y+4x=0\end{matrix}\right.\)
giải hệ phương trình : \(\left\{{}\begin{matrix}x-4y+3\sqrt{y}=\sqrt{2x+y}\\\sqrt{8y-1}+x^2-12y+1=0\end{matrix}\right.\)
giải hệ phương trình : \(\left\{{}\begin{matrix}x-4y+3\sqrt{y}=\sqrt{2x+y}\\\sqrt{8y-1}+x^2-12y+1=0\end{matrix}\right.\)
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+y}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) thì pt đầu trở thành:
\(\dfrac{a^2-b^2}{2}-4b^2+3b=a\Leftrightarrow a^2-9b^2+6b=2a\)
\(\Leftrightarrow\left(a-3b\right)\left(a+3b\right)-2\left(a-3b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a+3b-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=3b\\a=2-3b\end{matrix}\right.\) \(\Rightarrow...\)
giải hệ pt:
a, \(\left\{{}\begin{matrix}x^3+4y-y^3-16x=0\\y^2=5x^2+4\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}4x^2+y^4-4xy^3=1\\2x^2+y^2-2xy=1\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)
\(\Rightarrow-4\left(x^3-y^3\right)=\left(5x^2-y^2\right)\left(16x-4y\right)\)
\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)
\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\y=\dfrac{7x}{4}\\y=-3x\end{matrix}\right.\)
Lần lượt thế vào \(y^2=5x^2+4\)...
b. Đề bài bất hợp lý, \(4x^2+y^4\) cần là \(4x^4+y^4\)