Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Sơn
Xem chi tiết
Thành Trần Xuân
2 tháng 4 2019 lúc 16:49

Wow!!

Phạm Thị Thùy Linh
2 tháng 4 2019 lúc 19:09

dạ vâng

chứng minh gì thế

thiếu đề à

Đinh Sơn
6 tháng 4 2019 lúc 19:56

có đề nhưng mà tự động nó mất

Phạm Ngọc Mai
Xem chi tiết
Thành Trương
Xem chi tiết
Phùng Khánh Linh
12 tháng 6 2018 lúc 12:47

Bài 1. Áp dụng BĐT : ( x - y)2 ≥ 0 ∀xy

⇒ x2 + y2 ≥ 2xy

\(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\) ≥ 2

\(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2

⇒ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\)) ≥ 6 ( 1)

CMTT : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\)\(6\) ( 2)

Từ ( 1 ; 2) ⇒ \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\) ≥ 3( \(\dfrac{x}{y}+\dfrac{y}{x}\))

Đẳng thức xảy ra khi : x = y

Phùng Khánh Linh
12 tháng 6 2018 lúc 15:29

Bài 4. Do : a ≥ 4 ; b ≥ 4 ⇒ ab ≥ 16 ( * ) ; a + b ≥ 8 ( ** )

Áp dụng BĐT Cauchy , ta có : a2 + b2 ≥ 2ab = 2.16 = 32 ( *** )

Từ ( * ; *** ) ⇒ a2 + b2 + ab ≥ 16 + 32 = 48 ( 1 )

Từ ( ** ) ⇒ 6( a + b) ≥ 48 ( 2)

Từ ( 1 ; 2 ) ⇒a2 + b2 + ab ≥ 6( a + b)

Đẳng thức xảy ra khi a = b = 4

Akai Haruma
12 tháng 6 2018 lúc 16:27

Thành Trương: bạn có thể gõ cụ thể công thức ra được không?

Nguyễn Hà Linh
Xem chi tiết
Đinh Thị Ngọc Anh
31 tháng 12 2015 lúc 9:31

Không hiểu bạn viết cái gì

Phan Minh Anh
Xem chi tiết
Akai Haruma
4 tháng 7 2021 lúc 23:12

1. Không có dấu "=" em nhé.

Vì $a,b,c$ là độ dài 3 cạnh tam giác nên theo BĐT tam giác thì:

$a< b+c\Rightarrow a^2< ab+ac$

$b< a+c\Rightarrow b^2< ba+bc$

$c< a+b\Rightarrow c^2< ca+cb$

$\Rightarrow a^2+b^2+c^2< 2(ab+bc+ac)$ 

Ta có đpcm. 

Akai Haruma
4 tháng 7 2021 lúc 23:13

2.

$(x-1)(x-2)(x-3)(x-4)$

$=(x-1)(x-4)(x-2)(x-3)$

$=(x^2-5x+4)(x^2-5x+6)$

$=(x^2-5x+4)(x^2-5x+4+2)$

$=(x^2-5x+4)^2+2(x^2-5x+4)$

$=(x^2-5x+4)^2+2(x^2-5x+4)+1-1$

$=(x^2-5x+5)^2-1\geq 0-1=-1$ do $(x^2-5x+5)^2\geq 0$ với mọi $x\in\mathbb{R}$

Vậy ta có đpcm.

Akai Haruma
4 tháng 7 2021 lúc 23:16

3.

Áp dụng BĐT Cô-si:

$a^4+b^4\geq 2a^2b^2$

$b^4+c^4\geq 2b^2c^2$

$c^4+a^4\geq 2c^2a^2$

Cộng theo vế và thu gọn thì:

$a^4+b^4+c^4\geq a^2b^2+b^2c^2+c^2a^2(*)$
Tiếp tục áp dụng BĐT Cô-si:

$a^2b^2+b^2c^2\geq 2|ab^2c|\geq 2ab^2c$

$b^2c^2+c^2a^2\geq 2abc^2$

$a^2b^2+c^2a^2\geq 2a^2bc$

Cộng theo vế và thu gọn:

$\Rightarrow a^2b^2+b^2c^2+c^2a^2\geq abc(a+b+c)(**)$

Từ $(*); (**)\Rightarrow a^4+b^4+c^4\geq abc(a+b+c)$

Dấu "=" xảy ra khi $a=b=c$

Duyên Lương
Xem chi tiết
Nguyễn Võ Anh Nguyên
13 tháng 8 2017 lúc 15:25

3) Đặt b+c=x;c+a=y;a+b=z.

=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2

BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)

VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)

Dấu''='' tự giải ra nhá

pham thi thu trang
13 tháng 8 2017 lúc 18:00

Bài 4 

dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)

rồi khai căn ra \(\Rightarrow\)dpcm. 

đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)

pham thi thu trang
13 tháng 8 2017 lúc 18:16

bài 1 \(\left(\frac{x}{y}\right)^2+\left(\frac{y}{z}\right)^2\ge2\times\frac{x}{y}\times\frac{y}{z}=2\frac{x}{z}\)

làm tương tự rồi cộng các vế các bất đẳng thức lại với nhau ta có dpcm ( cộng xong bạn đặt 2 ra ngoài ý, mk ngại viết nhiều hhehe) 

       

nhung nguyen
Xem chi tiết
Đào Lan Anh
25 tháng 1 2016 lúc 11:47

khó hiểu quá hum

Đặng Anh Huy 20141919
25 tháng 1 2016 lúc 12:20

Hỏi đáp Toán

đào thị yến nhi
25 tháng 1 2016 lúc 16:08

khó hiểu thật đấy

Kim Taehyungie
Xem chi tiết
Mai_Anh_Thư123
Xem chi tiết