Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sn Sakai
Xem chi tiết
sat thu
Xem chi tiết
svtkvtm
31 tháng 8 2019 lúc 16:27

bạn c/m: a5+b5+c5+d5 chia hết cho 30 lấy: \(a^5+b^5+c^5+d^5-a-b-c-d=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)+....+d\left(d-1\right)\left(d+1\right)\left(d^2+1\right)⋮30\Rightarrow dpcm\)

Rosenaly
Xem chi tiết
 Mashiro Shiina
23 tháng 2 2018 lúc 18:40

Đặt: \(PDZ=\left(a-x\right)\left(b-y\right)\left(c-t\right)\left(d-z\right)\left(e-q\right)\)

Giải: Ta có: \(a;b;c;d;e\)\(x;y;z;t;q\) là hoán vị của chúng.

Nếu \(a;b;c;d;e\) đồng thời là số chẵn hoặc số lẻ thì hiển nhiên \(PDZ⋮2\)

Nếu \(a;b;c;d;e\) tồn tại ở 4 số lẻ 1 số chẵn hoặc 4 số chẵn 1 số lẻ

\(\Rightarrow x;y;z;t;q\) cũng tồn tại tương ứng

Khi đó: \(PDZ=\left(l_1-c_1\right)\left(l_2-c_2\right)\left(l_3-l_4\right)\left(l_5-l_6\right)\left(l_7-l_8\right)=\left(c_1-l_1\right)\left(c_2-l_2\right)\left(c_3-c_4\right)\left(c_5-c_6\right)\left(c_7-c_8\right)\) và hoán vị

\(l-l=c;c-c=c\) nên \(PDZ⋮2\)

chứng minh tương tự với trường hợp 3 lẻ 2 chẵn và 3 chẵn 2 lẻ ta có đpcm

Suzanna Dezaki
Xem chi tiết
Thu Thao
2 tháng 2 2021 lúc 11:24

Đề hay thật sự, cho x,y,z nhưng chứng minh a,b,c :vundefinedundefined

Hoàng Nữ Linh Đan
Xem chi tiết
Vũ Trung Hiếu
Xem chi tiết
Nguyễn Minh Anh
Xem chi tiết
tep.
Xem chi tiết
Xyz OLM
24 tháng 7 2021 lúc 11:14

Ta có a - b + b - c + c - a = 0 \(⋮30\)

=> (a - b) + (b - c) + (c - a) \(⋮\)30 (0) 

Xét hiệu (a - b)5 + (b - c)5 + (c - a)5 - [(a - b) + (b - c) + (c - a)] 

= [(a - b)5 - (a - b)] + [(b - c)5 - (b - c)] + [(c - a)5 - (c - a)]

Nhận thấy : (a - b)5 - (a - b) = (a - b)[(a - b)4 - 1]

= (a - b)[(a - b)2 - 1][(a - b)2 + 1] 

= (a - b)[(a - b)2 - 1][(a - b)2 - 4 + 5]

=  (a - b)[(a - b)2 - 1][(a - b)2 - 4] +  5(a - b)[(a - b)2 - 1]  

= (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1)(a - b)(a - b + 1)

Nhận thấy (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1) \(⋮\)30 (tích 5 số nguyên liên tiếp) (1)

Lại có (a - b - 1)(a - b)(a - b + 1) \(⋮\)6

=> 5(a - b - 1)(a - b)(a - b + 1) \(⋮\)30 (2) 

Từ (1) và (2) =>  (a - b - 2)(a - b - 1)(a - b)(a - b + 1)(a - b + 2) + 5(a - b - 1)(a - b)(a - b + 1) \(⋮\)30 

=> (a - b)5 + (b - c)5 + (c - a)5 - [(a - b) + (b - c) + (c - a)]  \(⋮\)30 (4) 

Từ (0) ; (4) => (a - b)5 + (b - c)5 + (c - a)5 \(⋮\)30 (đpcm) 

Khách vãng lai đã xóa
Kaori Akechi
Xem chi tiết