Cho hai số x, y dương thỏa mãn 6(x2 +y2)+20xy =5(x+y)(xy+3).
Chứng minh rằng: \(\dfrac{x}{y}+\dfrac{y}{x}\ge\dfrac{10}{3}\)
cho các số thực dưong x,y,z thỏa mãn : x2+y2+z2=3
chứng minh rằng : \(\dfrac{x}{\sqrt[3]{yz}}+\dfrac{y}{\sqrt[3]{zx}}+\dfrac{z}{\sqrt[3]{xy}}\ge xy+yz+zx\)
nhờ mn giúp mk bài này vs ạ
mk đang cần gấp !
cảm ơn mn nhiều
Đặt \(\left(\sqrt[3]{x};\sqrt[3]{y};\sqrt[3]{z}\right)=\left(a;b;c\right)\) \(\Rightarrow a^6+b^6+c^6=3\)
\(a^6+a^6+a^6+a^6+a^6+1\ge6a^5\)
Tương tự: \(5b^6+1\ge6b^5\) ; \(5c^6+1\ge6c^5\)
Cộng vế với vế: \(18=5\left(a^6+b^6+c^6\right)+3\ge6\left(a^5+b^5+c^5\right)\)
\(\Rightarrow3\ge a^5+b^6+b^5\)
BĐT cần chứng minh: \(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge a^3b^3+b^3c^3+c^3a^3\)
Ta có:
\(\dfrac{a^3}{bc}+\dfrac{b^3}{ca}+\dfrac{c^3}{ab}\ge\dfrac{ab}{c}+\dfrac{bc}{a}+\dfrac{ca}{b}\ge a+b+c\) (1)
Mà \(3\left(a+b+c\right)\ge\left(a^5+b^5+c^5\right)\left(a+b+c\right)\ge\left(a^3+b^3+c^3\right)^2\ge3\left(a^3b^3+b^3c^3+c^3a^3\right)\)
\(\Rightarrow a+b+c\ge a^3b^3+b^3c^3+c^3a^3\) (2)
Từ (1);(2) \(\Rightarrow\) đpcm
Cho hai số x y, dương thỏa mãn \(6\left(x^2+y^2\right)+20xy=5\left(x+y\right)\left(xy+3\right)\)
Tìm giá trị nhỏ nhất của \(A=\dfrac{x}{y}+\dfrac{y}{x}\)
\(\Leftrightarrow6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+20=\dfrac{5\left(x+y\right)\left(xy+3\right)}{xy}\ge\dfrac{5\left(x+y\right)2\sqrt{3xy}}{xy}=10\sqrt{3}\left(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}\right)\)
Đặt \(\sqrt{\dfrac{x}{y}}+\sqrt{\dfrac{y}{x}}=t\ge2\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}=t^2-2\)
\(\Rightarrow6\left(t^2-2\right)+20\ge10\sqrt{3}t\)
\(\Rightarrow3t^2-5\sqrt{3}t+4\ge0\)
\(\Rightarrow\left(\sqrt{3}t-1\right)\left(\sqrt{3}t-4\right)\ge0\)
Do \(t\ge2\Rightarrow\sqrt{3}t-1>0\)
\(\Rightarrow\sqrt{3}t-4\ge0\Rightarrow t\ge\dfrac{4}{\sqrt{3}}\)
\(\Rightarrow t^2\ge\dfrac{16}{3}\Rightarrow t^2-2\ge\dfrac{10}{3}\)
\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}\ge\dfrac{10}{3}\) (do \(\dfrac{x}{y}+\dfrac{y}{x}=t^2-2\))
Vậy \(A_{min}=\dfrac{10}{3}\) khi \(\left(x;y\right)=\left(1;3\right);\left(3;1\right)\)
Cho hai số x y, dương thỏa mãn \(6\left(x^2+y^2\right)+20xy=5\left(x+y\right)\left(xy+3\right)\)
Tìm giá trị nhỏ nhất của \(A=\dfrac{x}{y}+\dfrac{y}{x}\)
Cho hai số x y, dương thỏa mãn \(6\left(x^2+y^2\right)+20xy=5\left(x+y\right)\left(xy+3\right)\)
Tìm giá trị nhỏ nhất của \(A=\dfrac{x}{y}+\dfrac{y}{x}\)
Cho hai số x y, dương thỏa mãn \(6\left(x^2+y^2\right)+20xy=5\left(x+y\right)\left(xy+3\right)\)
Tìm giá trị nhỏ nhất của \(A=\dfrac{x}{y}+\dfrac{y}{x}\)
Cho hai số x y, dương thỏa mãn \(6\left(x^2+y^2\right)+20xy=5\left(x+y\right)\left(xy+3\right)\)
Tìm giá trị nhỏ nhất của \(A=\dfrac{x}{y}+\dfrac{y}{x}\)
Cho các số dương \(x,y,z\) thỏa mãn điều kiện \(xy+yz+zx=671\). Chứng minh rằng: \(\dfrac{x}{x^2-yz+2013}+\dfrac{y}{y^2-zx+2013}+\dfrac{z}{z^2-xy+2013}\ge\dfrac{1}{x+y+z}\)
Có \(VT=\dfrac{x^2}{x^3-xyz+2013x}+\dfrac{y^2}{y^3-xyz+2013y}+\dfrac{z^2}{z^3-xyz+2013z}\)
\(\ge\dfrac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2013\left(x+y+z\right)}\)
\(=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)\left[x^2+y^2+z^2-\left(xy+yz+zx\right)\right]+2013\left(x+y+z\right)}\)
\(=\dfrac{x+y+z}{x^2+y^2+z^2-\left(xy+yz+zx\right)+3\left(xy+yz+zx\right)}\)
(vì \(2013=3.671=3\left(xy+yz+zx\right)\))
\(=\dfrac{x+y+z}{x^2+y^2+z^2+2\left(xy+yz+zx\right)}\)
\(=\dfrac{x+y+z}{\left(x+y+z\right)^2}\)
\(=\dfrac{1}{x+y+z}\)
ĐTXR \(\Leftrightarrow\dfrac{1}{x^2-yz+2013}=\dfrac{1}{y^2-zx+2013}=\dfrac{1}{z^2-xy+2013}\)
\(\Leftrightarrow x^2-yz=y^2-zx=z^2-xy\)
\(\Leftrightarrow x=y=z\) (với \(x,y,z>0\))
Vậy ta có đpcm.
Cho x,y,z là các số thực dương thỏa mãn \(x+y+z=6\). Chứng minh rằng \(\dfrac{x+y}{xyz}\ge\dfrac{4}{9}\)
\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=z^2+\left(x+y\right)^2+2z\left(x+y\right)=36\)
áp dụng BĐT cosi :
\(z^2+\left(x+y\right)^2\ge2z\left(x+y\right)\)
<=> \(z^2+\left(x+y\right)^2+2z\left(x+y\right)\ge4z\left(x+y\right)=36< =>z\left(x+y\right)\ge9\)
ta lại có \(\dfrac{x+y}{xyz}=\dfrac{x}{xyz}+\dfrac{y}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xz}\) áp dụng BĐT buhihacopxki dạng phân thức => \(\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{4}{yz+xz}=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\left(đpcm\right)\)
dấu bằng xảy ra khi \(\left[{}\begin{matrix}yz=xz< =>x=y\\x+y+z=6\\z^2=\left(x+y\right)^2\end{matrix}\right.< =>\left[{}\begin{matrix}x+y+z=6\\z=2x=2y\end{matrix}\right.< =>\left[{}\begin{matrix}x=y=\dfrac{3}{2}\\z=3\end{matrix}\right.\)
\(\dfrac{x+y}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xz}\).
Áp dụng bất đẳng thức Cauchy-Schawrz dạng Engel:
\(\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{4}{z\left(x+y\right)}\) (1).
Áp dụng bất đẳng thức Cauchy cho hai số dương z và x+y, ta có:
\(z\left(x+y\right)\le\left(\dfrac{x+y+z}{2}\right)^2=9\). Suy ra, \(\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\) (2).
Từ (1) và (2), suy ra \(\dfrac{x+y}{xyz}\ge\dfrac{4}{9}\) (đpcm).
Dấu "=" xảy ra khi và chỉ khi \(\dfrac{1}{yz}=\dfrac{1}{xz}\) và \(z=x+y\).
a) Cho x,y,z là các số dương thỏa mãn x2+y2+z2=3, tìm giá trị nhỏ nhất của F=\(\dfrac{x^2+1}{z+2}\)+\(\dfrac{y^2+1}{x+2}\)+\(\dfrac{z^2+1}{y+2}\)
b) Với a,b,c > 0 thỏa mãn ab+bc+ca=3, chứng minh rằng
\(\sqrt{\dfrac{a}{a+3}}\) +\(\sqrt{\dfrac{b}{b+3}}\)+\(\sqrt{\dfrac{c}{c+3}}\)\(\le\)\(\dfrac{3}{2}\)