cho 2/3=4/6 chứng tỏ rằng 2+3/3=4+6/6
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4 VÀ 13
Cho S= 1+3+3^2+3^3+3^4+3^5+3^6+3^7+3^8+3^9.Chứng tỏ rằng Schia hết cho 4
\(S=1+3+3^2+...+3^9\)
Ta có: \(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^8+3^9\right)\)
\(S=4+3^2.\left(1+3\right)+...+3^8.\left(1+3\right)\)
\(S=4+3^2.4+...+3^8.4\)
\(S=4.\left(1+3^2+...+3^8\right)\)
Vì \(4⋮4\) nên \(4.\left(1+3^2+...+3^8\right)⋮4\)
Vậy \(S⋮4\).
\(#NqHahh\)
Cho S = 1+3+3^2+3^3+3^4+3^5+3^6+3^73^8+3^9. Chứng tỏ rằng S chia hết cho 4
\(S=\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+...+3^8\right)⋮4\)
Chứng tỏ rằng 2+2^2+2^3+2^4+.........+2^19+2^20 chia hết cho 6
\(2+2^2+2^3+2^4+...+2^{19}+2^{20}\)
\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{18}\left(2+2^2\right)\)
\(=6\left(1+2^2+...+2^{18}\right)⋮6\)
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 3
cái lòn con gái banh ra , con kẹt con trai thụt vào rồi liếm vào đó...........( tự hiểu, phê chưa)
Cho S= 3+32+33+34+35+36. Chứng tỏ rằng S chia hết cho 4.
Ta có: \(S=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)\)
\(=3.\left(1+3\right)+3^3.\left(1+3\right)+3^5.\left(1+3\right)\)
\(=3.4+3^3.4+3^5.4\)
\(=4.\left(3+3^3+3^5\right)\) chia hết cho 4
=> S chia hết cho 4 (đpcm).
Bài 1
a. Cho S = 3+3^2+3^3+3^4+3^5+3^6
Chứng tỏ rằng S chia hết cho 4
b. Chứng tỏ rằng : A = 4+4^2+4^3+4^4+4^5+4^6+4^7+4^8+4^9
Chia hết cho cả 3 và 4
Bài 2
a. Tìm số tự nhiên n sao cho 3 chia hết cho (n-1)
b. Tìm số tự nhiên n sao cho n+3 chia hết cho (n+1)
Bài 3
10^35 + 2 có chia hết cho 3 không. Vì sao?
Giup mik nha ai nhanh nhất mik sẽ TICK cho
Giúp với
Chứng tỏ rằng 3^4+3^5+3^6+3^7+3^8+3^9 chia hết cho 4 không tính nhân ra rồi chia nha
Bài 1: Cho A= 2 + 2 ^ 2 + 2 ^ 3 +.......+2^ 60 . Chứng tỏ rằng: 4 chia hết cho 3,5,7. Bài 2: Cho S= 1 + 5 ^ 2 + 5 ^ 4 + 5 ^ 6 +***+5^ 2020 . Chứng minh rằng S chia hết cho 313 Bài 3: Tính A= 5 + 5 ^ 2 + 5 ^ 3 +...+5^ 12
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
: Cho S = 1 + 2 + 2^2 + 2^3+ 2^4+ 2^5 + 2^6+2^7. Chứng tỏ rằng S chia hết chia hết cho 3 làm sao vậy mn
\(S=1+2+2^2+2^3+2^4+2^5+2^6+2^7\)
\(\Rightarrow S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)
\(\Rightarrow S=\left(1+2\right)+2^2\left(1+2\right)+2^4\left(1+2\right)+2^6\left(1+2\right)\)
\(\Rightarrow S=\left(1+2\right)\left(1+2^2+2^4+2^6\right)\)
\(\Rightarrow S=3\left(1+2^2+2^4+2^6\right)⋮3\)