Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
l҉o҉n҉g҉ d҉z҉
Xem chi tiết
Edogawa Conan
3 tháng 2 2021 lúc 5:39

Ta có: \(\frac{a}{1+4b^2}=\frac{a\left(1+4b^2\right)-4ab^2}{1+4b^2}=a-\frac{4ab^2}{1+4b^2}\ge a-\frac{4ab^2}{2\sqrt{4b^2.1}}=a-\frac{2ab^2}{2b}=a-ab\)(bđt cosi)

CMTT: \(\frac{b}{1+4a^2}\ge b-ab\)

=> P \(\ge a+b-2ab=4ab-2ab=2ab\)

Mặt khác ta có: \(a+b\ge2\sqrt{ab}\)(cosi)

=> \(4ab\ge2\sqrt{ab}\) <=> \(2ab\ge\sqrt{ab}\)<=> \(4a^2b^2-ab\ge0\) <=> \(ab\left(4ab-1\right)\ge0\)

<=> \(\orbr{\begin{cases}ab\le0\left(loại\right)\\ab\ge\frac{1}{4}\end{cases}}\)(vì a,b là số thực dương)

=> P \(\ge2\cdot\frac{1}{4}=\frac{1}{2}\)

Dấu "=" xảy ra <=> a = b = 1/2

Vậy MinP = 1/2 <=> a = b= 1/2

Khách vãng lai đã xóa
Kiệt Nguyễn
3 tháng 2 2021 lúc 11:03

Ta có: \(a+b=4ab\le\left(a+b\right)^2\Leftrightarrow\left(a+b\right)\left[\left(a+b\right)-1\right]\ge0\)

Mà \(a+b>0\Rightarrow a+b\ge1\)

Áp dụng BĐT Cô-si, ta có: \(P=\frac{a}{1+4b^2}+\frac{b}{1+4a^2}=\left(a-\frac{4ab^2}{1+4b^2}\right)+\left(b-\frac{4a^2b}{1+4a^2}\right)\)\(\ge\left(a-\frac{4ab^2}{4b}\right)+\left(b-\frac{4a^2b}{4a}\right)=\left(a+b\right)-2ab=\left(a+b\right)-\frac{a+b}{2}=\frac{a+b}{2}\ge\frac{1}{2}\)

Đẳng thức xảy ra khi a = b = 1/2

Khách vãng lai đã xóa
Ngô Thị Phương Thảo
Xem chi tiết
Akai Haruma
30 tháng 8 2017 lúc 21:00

Lời giải:

Thay \(a=b+1\) ta có:

\(G=4(b+1)^2+b^2-4b(b+1)+4(b+1)-2b\)

Khai triển thu được:

\(G=b^2+6b+8\)

\(\Leftrightarrow G=(b+3)^2-1\geq -1\)

Do đó \(G_{\min}=-1\). Dấu bằng xảy ra khi \(b=-3\Leftrightarrow a=-2\)

Ngô Thanh Sang
30 tháng 8 2017 lúc 21:03

\(G=\left[\left(2a\right)^2-2\left(2a\right).b+b^2\right]+2\left(2a-b\right)\)
\(G=\left(2a-b\right)^2+2\left(2a-b\right)\)
\(G=\left(a+a-b\right)^2+2\left(a+a-b\right)\)
\(G=\left(a+1\right)^2+2\left(a+1\right)\)
\(G=\left(a+1\right)^2+2\left(a+1\right)+1-1\)
\(G=\left(a+1+1\right)^2-1\)
\(G=\left(a+2\right)^2-1\)
\(G\ge-1\)
Đẳng thức khi \(a=-2;b=-3\)

Nguyễn Đình Dũng
30 tháng 8 2017 lúc 20:59

\(G=4a^2+b^2-\text{4ab+4a-2b}\)

\(\Rightarrow G=\left(2a-b\right)^2+2\left(2a-b\right)\)=\(\left(2a-b\right)\left(2a-b+2\right)\)

\(\Rightarrow G=\left(a+a-b\right)\left(a+a-b+2\right)\)

Thay a-b=1 vào \(\Rightarrow G=\left(a+1\right)\left(a+3\right)\Rightarrow G=\left(a+2-1\right)\left(a+2+1\right)\)

\(\Rightarrow G=\left(a+2\right)^2-1\ge-1\Rightarrow MinG=-1\)

Dấu "=" xảy ra khi x=-2

Vậy Min G=-1

Lê Song Phương
Xem chi tiết
Hà Ngọc Linh
Xem chi tiết
Nguyễn Đức Huy
7 tháng 6 2019 lúc 22:44

ta có:

P=\(a^4+b^4+4ab=\left(a^2+b^2\right)^2-2a^2b^2+4ab=16+ab\left(4-2ab\right)=16+ab\left(a^2+b^2-2ab\right)=16+ab\left(a-b\right)^2\ge16\)xảy ra khi a=b=\(\sqrt{2}\)

nhok ngây ngơ
Xem chi tiết
Nguyễn Như Nam
27 tháng 11 2016 lúc 19:13

Ta có: \(3a^2+b^2=4ab\Rightarrow4a^2-4ab+b^2-a^2=0\Rightarrow\left(2a-b\right)^2-a^2=0\)

\(\Rightarrow\left(2a-b-a\right)\left(2a-b+a\right)=0\Rightarrow\left(a-b\right)\left(3a-b\right)=0\)

Để đẳng thức xảy ra \(\Rightarrow\left[\begin{array}{nghiempt}a-b=0\\3a-b=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}a=b\\3a=b\end{array}\right.\)

theo đề ra thì b>a>0 => không xảy ra trường hợp a=b.

\(\Rightarrow\frac{a-b}{a+b}=\frac{a-3a}{a+3a}=\frac{-2a}{4a}=-\frac{1}{2}\)

P/s: Không biết cách trình bày có đc không a~

 

cheems yasuo
Xem chi tiết
Buddy
18 tháng 1 2022 lúc 17:05

Em gõ Latex nha mn nhìn ko ra nha em

Trương Tuệ Nga
Xem chi tiết
Trần Minh Hiển
Xem chi tiết
Hồng Phúc
19 tháng 1 2021 lúc 22:12

Áp dụng BĐT BSC và Cosi:

\(\dfrac{1}{a^2+b^2}+\dfrac{2}{ab}+4ab=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\dfrac{1}{4ab}+4ab+\dfrac{5}{4ab}\)

\(\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{1}{4ab}.4ab}+\dfrac{5}{\left(a+b\right)^2}\)

\(=\dfrac{4}{\left(a+b\right)^2}+2+\dfrac{5}{\left(a+b\right)^2}\ge4+2+5=11\)

\(min=11\Leftrightarrow a=b=\dfrac{1}{2}\)

nguyen thanh tung
Xem chi tiết