Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Cao Lê Trọng Hiếu
Xem chi tiết
Lê Song Phương
4 tháng 6 2023 lúc 7:38

Ta nhận thấy tổng các hệ số trong phương trình đã cho là 

\(1-2\left(m-1\right)+2m-3=0\) nên pt này luôn có 1 nghiệm bằng 1, còn nghiệm kia là \(2m-3\). Do vai trò của \(x_1,x_2\) trong \(x^2+2x_1x_2-x_2=1\) là không như nhau nên ta phải chia làm 2TH:

 TH1: \(x_1=1;x_2=2m-3\). Khi đó ta có 

\(1+2\left(2m-3\right)-\left(2m-3\right)=1\) \(\Leftrightarrow2m-3=0\) \(\Leftrightarrow m=\dfrac{3}{2}\)

 TH2: \(x_1=2m-3;x2=1\). Khi đó

\(\left(2m-3\right)^2+2\left(2m-3\right)-1=1\) \(\Leftrightarrow4m^2-8m+1=0\) \(\Leftrightarrow m=\dfrac{2\pm\sqrt{3}}{2}\)

Vậy để pt đã cho có 2 nghiệm \(x_1,x_2\) thỏa ycbt thì \(\left[{}\begin{matrix}m=\dfrac{3}{2}\\m=\dfrac{2\pm\sqrt{3}}{2}\end{matrix}\right.\)

Do Thai
Xem chi tiết
Vũ Như Mai
20 tháng 3 2017 lúc 16:07

À làm cho bạn câu cuối nè. Hiểu rồi hiểu rồi.

\(x_1^2.x_2+x_1.x_2^2+30=0\)

\(\Leftrightarrow P.S=30\)

\(\Leftrightarrow\left(-2m+5\right)\left[-\left(2m-6\right)\right]=30\)

\(\Leftrightarrow\left(-2m+5\right)\left(-2m+6\right)=30\)

\(\Leftrightarrow4m^2-12m-10m+30=30\)

\(\Leftrightarrow4m^2-22m=0\)

\(\Leftrightarrow m\left(4m-22\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=0\\4m-22=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{11}{2}\end{cases}}}\)

Vậy: m = .. và .. là giá trị cần tìm

Vũ Như Mai
18 tháng 3 2017 lúc 15:09

a/ ( a = 1; b = 2 (m-3); c = -2m + 5 )

\(\Delta=b^2-4ac\)

    \(=\left[2\left(m-3\right)\right]^2-4.1.\left(-2m+5\right)\)

    \(=4\left(m^2-6m+9\right)+8m-20\)

     \(=4m^2-24m+36+8m-20\)

     \(=4m^2-16m+16\)

    \(=\left(2m\right)^2-16m+16\)

     \(=\left(2m-4\right)^2\ge0\forall m\)

Vậy pt trên luôn có 2 nghiệm với mọi m

b/ Theo Vi-et ta có: \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=-\left[2\left(m-3\right)\right]\\P=x_1x_2=\frac{c}{a}=-2m+5\end{cases}}\)

Tới đây thôi. Đọc đề chả hiểu viết gì cả.

Việt Hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 5 2022 lúc 22:06

Khi m=0 thì pt sẽ là \(x^2+2x-5=0\)

=>(x+1)2=6

hay \(x\in\left\{\sqrt{6}-1;-\sqrt{6}-1\right\}\)

2611
11 tháng 5 2022 lúc 22:07

Thay `m=0` vào ptr:

    `x^2-2(0-1)x+2.0-5=0`

`<=>x^2+2x-5=0`

Ptr có: `\Delta'=1^2-(-5)=6 > 0`

`=>` Ptr có `2` nghiệm pb

`x_1=[-b'+\sqrt{\Delta'}]/a=-1+\sqrt{6}`

`x_2=[-b'-\sqrt{\Delta'}]/a=-1-\sqrt{6}`

Vậy với `m=0` thì `S={-1+-\sqrt{6}}`

Vô danh
11 tháng 5 2022 lúc 22:08

Thay `m=0` vào pt ta có:

\(x^2-2\left(0-1\right)x+2.0-5=0\\ \Leftrightarrow x^2-2.\left(-1\right)x+0-5=0\\ \Leftrightarrow x^2+2x-5=0\)

Ta có:

\(\Delta=2^2-4.1.\left(-5\right)=4+20=24>0\)

Suy ra pt luôn có 2 nghiệm phân biệt

\(x_1=\dfrac{-2+\sqrt{24}}{2.1}=\dfrac{-2+2\sqrt{6}}{2}=-1+\sqrt{6}\\ x_2=\dfrac{-2-\sqrt{24}}{2.1}=\dfrac{-2-2\sqrt{6}}{2}=-1-\sqrt{6}\)

N.T.M.D
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 0:08

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=6m+4\\3x-2y=11-m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2y=6m+4\\5x=5m+15\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=m+3\\y=2m-1\end{matrix}\right.\)

b. \(P=\left(m+3\right)^2-\left(2m-1\right)^2\)

\(P=-3m^2+10m+10=-3\left(m-\dfrac{5}{3}\right)^2+\dfrac{55}{3}\le\dfrac{55}{3}\)

Dấu "=" xảy ra khi \(m=\dfrac{5}{3}\)

Ngân Ngô kim
Xem chi tiết
N.T.M.D
Xem chi tiết
Nguyễn Minh Quang
4 tháng 2 2021 lúc 17:13

từ phương trình thứ nhất ta có :

\(y=-x+3m+2\) thế xuống phương trình dười : \(3x+2x-6m-4=11-m\Leftrightarrow x=3+m\Rightarrow y=2m-1\)

b. ta có \(x^2-y^2=\left(m+3\right)^2-\left(2m-1\right)^2=-3m^2+10m+8=-3\left(m-\frac{5}{3}\right)^2+\frac{49}{3}\le\frac{49}{3}\)

Dấu bằng xảy ra khi m=5/3

Khách vãng lai đã xóa
hue tran
Xem chi tiết
nguyễn huy hoàng
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 4 2023 lúc 9:30

x1+x2=2 

mà 1-2=-1 

nên không có m,n thỏa mãn

N.T.M.D
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 2 2021 lúc 0:05

\(\left\{{}\begin{matrix}x+my=3\\m^2x+my=2m^2+m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+my=3\\\left(m^2-1\right)x=2m^2+m-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+my=3\\x=\dfrac{2m+3}{m+1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2m+3}{m+1}\\y=\dfrac{1}{m+1}\end{matrix}\right.\)

\(P=\left(\dfrac{2m+3}{m+1}\right)^2+\dfrac{3}{\left(m+1\right)^2}=\left(2+\dfrac{1}{m+1}\right)^2+\dfrac{3}{\left(m+1\right)^2}\)

\(=4+\dfrac{4}{m+1}+\dfrac{4}{\left(m+1\right)^2}=\left(\dfrac{2}{m+1}+1\right)^2+3\ge3\)

\(P_{min}=3\) khi \(m=-3\)