Bài 1: Cho a=111...111(có 2012 số 1) ,b=1000..005(có 2011 số 0). CM \(\sqrt{ab+1}\) là số tự nhiên
Cho số A=111...111 (2019 chữ số 1) và B= 1000...005(2018 chữ số 0).Chứng minh rằng A*B+1 là 1 số chính phương.
Lời giải:
Đặt \(\underbrace{111...1}_{2019}=a\Rightarrow 9a+1=1\underbrace{00...000}_{2019}\)
Do đó:
\(AB+1=\underbrace{111....1}_{2019}(1\underbrace{000...00}_{2019}+5)+1\)
\(=a(9a+1+5)+1=9a^2+6a+1=(3a+1)^2\)
Vậy $AB+1$ là một số chính phương.
Cho a = 111...11 ( n chữ số 1 ), b = 1000....0 (n-2 chữ số 1)
Cm ab+4 là số chính phương
cho số a = 111...............1(có n chữ số 1),số b =100.................05(n-1 chữ số 0)
biết n là số tự nhiên lớn hơn 1 . chứng minh rằng ab +1 là số chính phương
lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu lêu
bài 1: cho biết các số tự nhiên a và 6a có tổng các chữ số giống nhau.. chứng minh rằng a chia hết cho 9
bài 2: chứng minh rằng với mọi số tự nhiên n ta có:
a) n. ( n+2) . (n+7) chia hết cho 3
b) 5^n -1 chia hết cho 4
c)n^2+n.5 không chia hết cho 7
bài 3:chứng minh rằng số 111....111 +8n chia hết cho 9( số 111...111 có n chữ số 1)
Cho A= 111...1 ( 2008 chữ số 1)
B= 100..05 ( 2007 chữ số 0)
Chứng minh rằng \(\sqrt{AB+1}\)là số tự nhiên
Để \(\sqrt{AB+1}\in N\) thì AB+1 phải là số chính phương
Đặt 2008 = n
Ta có A = 11..1= \(\frac{10^n-1}{9}\)
B = 100..05 =10..00(2008 chữ số 0) +5 = 10n+5
\(\Rightarrow AB+1=\frac{10^n-1}{9}.\left(10^n+5\right)+1\)
\(=\frac{\left(10^n-1\right)\left(10^n+5\right)+9}{9}=\frac{10^{2n}+5.10^n-10^n-5+9}{9}\)
\(=\frac{10^{2n}+4.10^n+4}{9}=\frac{\left(10^n+2\right)^2}{9}=\left(\frac{10^n+2}{3}\right)^2\)
Mà 10n+2 có tổng các chữ số bằng 3 nên chia hết cho 3
Suy ra AB+1 là số chính phương
\(\Rightarrow\sqrt{AB+1}\)LÀ SỐ TỰ NHIÊN
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
Cho a = 111...11 ( n chữ số 1 ), b = 1000....0 (n-2 chữ số 1)
Cm ab+4 là số chính phương
Cho a = 111.....1 ( n chữ số 1) , b = 1 00...005 ( n-1 chữ số 0) .Chứng minh rằng: ab+1 là số chính phương
ai giúp em cách nhân ab+1 trước rồi đặt a = ..... được không ạ T_T? em xin luôn đấy ạ. em đăng nhiều lắm rồi mà không ai giúp
\(a=\dfrac{1}{9}.\left(999...9\right)=\dfrac{1}{9}.\left(100...0-1\right)=\dfrac{1}{9}\left(10^n-1\right)\)
\(b=100...0+5=10^n+5\)
\(\Rightarrow ab+1=\dfrac{1}{9}\left(10^n-1\right)\left(10^n+5\right)+1=\dfrac{1}{9}\left(10^{2n}+4.10^n+4\right)=\dfrac{1}{9}\left(10^n+2\right)^2\)
\(=\left(\dfrac{10^n+2}{3}\right)^2\)
Ta có: \(10\equiv1\left(mod3\right)\Rightarrow10^n\equiv1\left(mod3\right)\)
\(\Rightarrow10^n+2⋮3\)
\(\Rightarrow\dfrac{10^n+2}{3}\in Z\)
\(\Rightarrow\left(\dfrac{10^n+2}{3}\right)^2\) là SCP hay \(ab+1\) là SCP
Cho : a/111 < x/111 < a + 1/111 , trong đó a là một số tự nhiên .
Có bao nhiêu số tự nhiên x thỏa mãn điều kiện trên ?
333 nha hok tốt
0 nha, mình làm rùi
Bài 1: Khi chia số tự nhiên a cho 148 ta được số dư là 111. Hỏi a có chia hết cho 37 không ? Vì sao?
Bài 2: Chứng tỏ rằng với mọi số tự nhiên n thì tích (n + 3)(n + 12) là số chia hết cho 2
Bài 3: Chứng minh rằng: ab ba + chia hết cho 11 Bài 7: Chứng tỏ: A = 31 + 32 + 33 + … + 360 chia hết cho 13
Bài 4: Cho M = 2 + 22 + 23 + … + 220 . Chứng tỏ rằng M 5
Bài 5: Tìm số tự nhiên n để (3n + 4) chia hết cho n – 1.
giúp mình nha!!!=333
Bài 5:
Ta có: \(3n+4⋮n-1\)
\(\Leftrightarrow n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;0;8;-6\right\}\)