CMR các số sau không là số chính phương:
a)abab
b)abcd
Chứng minh rằng các tổng sau không thể là số chính phương:
a)M= 19k+5k+1995k+1996k (với k chẵn)
b)N=20042004.k+2003
a) * Lưu ý :Thiếu điều kiện (k\(\ne0\)) vì nếu k không \(\ne0\) thì M là số chính phươngVới k chẵn thì 19k chia 4 dư 1, 5k chia 4 dư 1, 1996k \(⋮\) 4.Do đó, với k chẵn thì M = 19k + 5k + 1995k + 1996k chia cho 4 dư 3
\(\Rightarrow\)M không là số chính phương.(đpcm)
b) 20042004.k \(⋮\)4, 2003 chia 4 dư 3 nên N chia 4 dư 3
\(\Rightarrow\)N không là số chính phương (đpcm)
Chứng tỏ các hiệu sau là số chính phương:
A = 111222 - 333
B = 444222 - 666
Ta có :
\(A=111222-333=110889=333^2\)
\(B=444222-666=443556=666^2\)
\(\Leftrightarrow A,B\) là số cp
Cho a, b là các số nguyên. Chứng minh rằng các số sau đây là số chính phương:
a. A=(a+1)(a+3)(a+5)(a+7)+16
b. B=(a-b)(a-2b)(a-3b)(a-4b)+b4
a: \(A=\left(a+1\right)\left(a+3\right)\left(a+5\right)\left(a+7\right)+16\)
\(=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+16\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+105+16\)
\(=\left(a^2+8a\right)^2+22\left(a^2+8a\right)+121\)
\(=\left(a^2+8a+11\right)^2\)
b: \(\left(a-b\right)\left(a-2b\right)\left(a-3b\right)\left(a-4b\right)+b^4\)
\(=\left(a^2-5ab+4b^2\right)\left(a^2-5ab+6b^2\right)+b^4\)
\(=\left(a^2-5ab\right)^2+10b^2\left(a^2-5ab\right)+24b^4+b^4\)
\(=\left(a^2-5ab\right)^2+2\cdot\left(a^2-5ab\right)\cdot5b^2+\left(5b^2\right)^2\)
\(=\left(a^2-5ab+5b^2\right)^2\)
chứng tỏ các hiệu sau là số chính phương:
A= 111..11 (100 số 1) - 222..222 (50 số 2)
B= 111..11 (50 số 1) - 999..99 (50 số 9)
C= 111..11 (2n chữ số 1) - 22..22 (n chữ số 2)
Bài1: Tìm n€N để các số sau là số chính phương:
a) A=2n+1 và B= 3n+1. Đều là số chính phương( n có 2 chữ số ).
Bài 2:CMR: Các số sau không phải là số chính phương:
a)5+5^2+5^3+...5^2016
b) abab( abcd có gạch ngang trên đầu)
c) abcabc( abcabc có gạch ngang trên đầu)
a: \(\overline{abab}=1000a+100b+10a+b=1010a+101b=101\left(10a+b\right)\)
=>\(\overline{abab}\) là hợp số
b: \(A=2011\cdot2012\cdot2013\cdot2014+1\)
\(=2011\left(2011+3\right)\left(2011+1\right)\left(2011+2\right)+1\)
\(=\left(2011^2+3\cdot2011\right)\cdot\left(2011^2+3\cdot2011+2\right)+1\)
\(=\left(2011^2+3\cdot2011\right)^2+2\left(2011^2+3\cdot2011\right)+1\)
\(=\left(2011^2+3\cdot2011+1\right)^2\)
=>A là hợp số
c: \(B=7+7^2+7^3+...+7^{100}\)
\(=7\cdot1+7\cdot7+7\cdot7^2+...+7\cdot7^{99}\)
\(=7\left(1+7+7^2+...+7^{99}\right)\) chia hết cho 7
=>B là hợp số
CMR các số sau không phải là số chính phương
abab;ababab;abababab
Các số sau đây, số nào là số chính phương:
a, A=222...24 (50 c/s 2)
b,B=11115556
c, C=99..900..025 (n c/s 9 và n c/s 0)
d, D=44...488...89 (n c/s 4 và n-1 c/s 8)
e,E=111...1 - 22...2 (2n c/s 1 và n c/s 2)
f, F=12 + 22 +.....+ 562
giúp mình với ạ!
chứng minh các số sau chính phương:
a) A=11...155..56 (có n chữ số 1, có n-1 chữ số 5)
b) B=a.b +4 với a=11...1 (có n chữ số 1) và b=100...011 (có n-2 chữ số 0)
c) C= 11...1 (cs 2n chữ số 1)+ 11...1(có n+1 chữ số 1) + 666...6 (có n số 6) +8
giúp mình với ạ, mình cảm ơn