cho x,y>0 va \(x+y\le1.\)
tim GTNN cua bieu thuc \(A=\dfrac{1}{x^2+y^2}+\dfrac{1}{xy}\)
Cho A = \(\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\dfrac{x+y+2xy}{1-xy}\right)\)
a, Rut gon bieu thuc A
b, Tinh gia tri cua A khi x = \(\dfrac{1}{1+\sqrt{2}}\)
c, Tim Max A
Khôi Bùi , DƯƠNG PHAN KHÁNH DƯƠNG, Mysterious Person, Phạm Hoàng Giang, Phùng Khánh Linh, TRẦN MINH HOÀNG, Dũng Nguyễn, Nhã Doanh, hattori heiji, ...
a: \(A=\dfrac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{1-xy}:\dfrac{1-xy+x+y+2xy}{1-xy}\)
\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{x+y+xy+1}\)
\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)
b: \(x=\dfrac{1}{\sqrt{2}+1}=\sqrt{2}-1\)
\(A=\dfrac{2\sqrt{\sqrt{2}-1}}{\sqrt{2}-1+1}=\sqrt{2\left(\sqrt{2}-1\right)}\)
CHo 2 so duong xy co X+Y=1
Tim gtnn cua bieu thuc P=1/x^2+y^2 + 2/xy+4XY
1. Cho x,y > 0 .Tim GTNN cua A = \(\dfrac{x^2}{y^2}+\dfrac{4y^2}{x^2}-\dfrac{x}{y}-\dfrac{2y}{y}+1\)
cho 2 bieu thuc:
A=(\(\sqrt{20}\) -\(\sqrt{45}\) +3\(\sqrt{5}\) ).\(\sqrt{5}\) va B=\(\dfrac{x+1-2\sqrt{x}}{\sqrt{x}-1}\) +\(\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\) (Dieu kien: x>0, x khac 1
a) Rut gon bieu thuc A va B
b)Tim cac gia tri cua x de gia tri cua bieu thuc A bang 2lan gia tri B
a: \(A=\left(2\sqrt{5}-3\sqrt{5}+3\sqrt{5}\right)\cdot\sqrt{5}=2\sqrt{5}\cdot\sqrt{5}=10\)
\(B=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\)
\(=\sqrt{x}-1+\sqrt{x}=2\sqrt{x}-1\)
b: A=2B
=>\(10=4\sqrt{x}-2\)
=>\(4\sqrt{x}=12\)
=>x=9(nhận)
Cho x>0 ,y>0 thoa man dieu kien \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
Tim GTNN cua \(\sqrt{x}+\sqrt{y}\)
Cho 0<x<2
Tim GTNN A=\(\dfrac{9x}{2-x}+\dfrac{2}{x}\)
# Bài 1
* Ta cm BĐT sau \(a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\) (1) bằng cách biến đổi tương đương
* Với \(x,y>0\) áp dụng (1) ta có
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{\left(\sqrt{x}\right)^2}+\dfrac{1}{\left(\sqrt{y}\right)^2}\ge\dfrac{1}{2}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\)
Mà \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{2}\)
\(\Rightarrow\) \(\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\right)^2\le1\) \(\Leftrightarrow\) \(0< \dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\le1\) (I)
* Ta cm BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) với \(a,b>0\) (2)
Áp dụng (2) với x , y > 0 ta có
\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}\ge\dfrac{4}{\sqrt{x}+\sqrt{y}}\) (II)
* Từ (I) và (II) \(\Rightarrow\) \(\dfrac{4}{\sqrt{x}+\sqrt{y}}\le1\)
\(\Leftrightarrow\) \(\sqrt{x}+\sqrt{y}\ge4\)
Dấu "=" xra khi \(x=y=4\)
Vậy min \(\sqrt{x}+\sqrt{y}=4\) khi \(x=y=4\)
Cho \(x>0;\) \(y>0;\) \(x+y\le1\). CM: \(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge4\)
\(VT\ge\dfrac{4}{x^2+y^2+2xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\) (vì \(x+y\le1\) )
Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
Ta có đpcm
1) Cho cac so thuc duong x,y>1 . Tim GTNN cua bieu thuc : \(P=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Đặt \(\left\{{}\begin{matrix}x-1=a>0\\y-1=b>0\end{matrix}\right.\)
\(P=\frac{\left(a+1\right)^2}{b}+\frac{\left(b+1\right)^2}{a}\ge\frac{\left(a+b+2\right)^2}{a+b}=\frac{\left(a+b\right)^2+4\left(a+b\right)+4}{a+b}\)
\(P\ge a+b+\frac{4}{a+b}+4\ge2\sqrt{\frac{4\left(a+b\right)}{a+b}}+4=8\)
\(P_{min}=8\) khi \(a=b=1\) hay \(x=y=2\)
Cho x,y > 0 thỏa mãn \(x+y\le1\)
Tính GTNN của \(A=\dfrac{1}{x^2+y^2}+\dfrac{5}{xy}\)
cái này giống này - Here. Mỗi tội bài này Min=22 khi x=y=1/2
a, Cho a,b > 0. Cm: \(\dfrac{1}{ab}\ge\dfrac{4}{\left(a+b\right)^2}\) b, Tìm GTNN của A=\(\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}+4xy\) (với x,y>0 và \(x+y\le1\)