Tìm x biết:
a. (x-1)*(x-2)>0
b.x^2*(x-2) / x-4 <0
c.x+5/x+2<1
CÁC BẠN GIÚP MK VS NHA THANK YOU
Chứng tỏ rằng các phương trình sau vô nghiệm:
a.x2+2x+3/x2-x+1=0
b.x/x+2+4/x-2=4/x2-4
a. \(\dfrac{x^2+2x+3}{x^2-x+1}=0\) ⇔x2+2x+3=0 ⇔x2+2x+1+2=0 ⇔(x+1)2+2=0
Vì (x+1)2+2>0 nên phương trình đã cho vô nghiệm.
b) \(\dfrac{x}{x+2}+\dfrac{4}{x-2}=\dfrac{4}{x^2-4}\) ⇔\(\dfrac{x\left(x-2\right)+4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{4}{\left(x-2\right)\left(x+2\right)}\)
⇔\(x\left(x-2\right)+4\left(x+2\right)=4\) ⇔x2-2x+4x+8-4=0 ⇔x2+2x+4=0 ⇔x2+2x+1+3=0 ⇔(x+1)2+3=0
Vì (x+1)2+3>0 nên phương trình đã cho vô nghiệm.
Bài 4. Tìm số nguyên x , biết:
a) |x - 2|= 0 b) |x + 3|= 1 c) -3 |4 - x|= -9 d) |2x + 1|= -2
Bài 5. Tìm số nguyên x, biết:
a) (x + 3)mũ 2 = 36 b) (x + 5)mũ 2 =100 c) (2x - 4)mũ 2 = 0 d) (x - 1)mũ 3 = 27
a.4x^3-4x^2+x=0
b.x.(x-3)+12-4x=0
c.x^3+3x^2+3x-7=0
*tìm x*
c: Ta có: \(x^3+3x^2+3x-7=0\)
\(\Leftrightarrow x+1=2\)
hay x=1
b: Ta có: \(x\left(x-3\right)-4x+12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Tìm x biết:
a)x^4+x^3-10x^2+1=(x-2)(x^2+2x+4)
\(\Leftrightarrow x^4+x^3-10x^2+1=x^3-8\)
\(\Leftrightarrow x^4-10x^2+9=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=3\\x=-3\end{matrix}\right.\)
Tìm x, biết:
a, (x+8).(x+6)-x^2=104
b, (x+1).(x+2)-(x-3).(x+4)=6
c, 3.(2x-1).(x+2)-2.(3x+2).(x-4)=5
a: \(\Leftrightarrow14x=56\)
hay x=4
Tìm x biết:
a, 2^x -15= 2^4+1
b, x+1/65+x+2/64=x+3/63+x+4/61
`a,`\(2^x -15= 2^4+1\)
`-> 2^x-15=17`
`-> 2^x=17+15`
`-> 2^x=32`
`-> 2^x=2^5`
`-> x=5`
`b,` Có phải đề là \(\dfrac{x+1}{65}+\dfrac{x+2}{64}=\dfrac{x+3}{63}+\dfrac{x+4}{62}\) ?
`=>`\(\dfrac{x+1}{65}+1+\dfrac{x+2}{64}+1=\dfrac{x+3}{63}+1+\dfrac{x+4}{62}+1\)
`=>`\(\dfrac{x+1+65}{65}+\dfrac{x+2+64}{64}-\dfrac{x+3+63}{63}-\dfrac{x+4+62}{62}=0\)
`=>`\(\dfrac{x+66}{65}+\dfrac{x+66}{64}-\dfrac{x+66}{63}-\dfrac{x+66}{62}=0\)
`=>`\(\left(x+66\right)\left(\dfrac{1}{65}+\dfrac{1}{64}-\dfrac{1}{63}-\dfrac{1}{62}\right)=0\)
Mà `1/65+1/64-1/63-1/62 \ne 0`
`-> x+66=0`
`-> x=-66`
Tìm x biết:
a, 2^x -15= 2^4+1
b, x+1/65+x+2/64=x+3/63+x+4/61
a: =>2^x=2^4+16=32
=>x=5
b: Sửa đề: \(\dfrac{x+1}{65}+\dfrac{x+2}{64}=\dfrac{x+3}{63}+\dfrac{x+4}{62}\)
=>\(\left(\dfrac{x+1}{65}+1\right)+\left(\dfrac{x+2}{64}+1\right)=\left(\dfrac{x+3}{63}+1\right)+\left(\dfrac{x+4}{62}+1\right)\)
=>x+66=0
=>x=-66
Tìm x,biết:
a)5x.(x+1)-5.(x+1).(x-2)=0
b)(4x+1).(x-2)-(2x-3)2=4
a)5(x+1)(x-x-2)=0
=>5(x+1).-2=0
=>5(x+1)=0
=>x+1=0
=>x=-1
a)5x.(x+1)-5.(x+1).(x-2)=0
⇒5x(x+1)-(5x-10)(x+1)=0
⇒(x+1)(5x-5x+10)=0
⇒10(x+1)=0
⇒x+1=0⇒x=-1
a) \(5x\left(x+1\right)-5\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow5\left(x+1\right)\left(x-x+2\right)=0\)
\(\Leftrightarrow10\left(x+1\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
b) \(\left(4x+1\right)\left(x-2\right)-\left(2x-3\right)^2=4\)
\(\Leftrightarrow4x^2-7x-2-4x^2+12x-9=4\)
\(\Leftrightarrow5x=15\Leftrightarrow x=3\)
Tìm x, biết:
a) \({2^x} = 8;\)
b) \({2^x} = \frac{1}{4};\)
c) \({2^x} = \sqrt 2 .\)
\(a,2^x=8\\ \Leftrightarrow2^x=2^3\\ \Leftrightarrow x=3\\ b,2^x=\dfrac{1}{4}\\ \Leftrightarrow2^x=2^{-2}\\ \Leftrightarrow x=-2\\ c,2^x=\sqrt{2}\\ \Leftrightarrow2^x=2^{\dfrac{1}{2}}\\ \Leftrightarrow x=\dfrac{1}{2}\)
Tìm x biết:
a) \(\sqrt{x}\) < 3
b) \(\sqrt{4-x}\) ≤ 2
c) \(\sqrt{x+2}\) = \(\sqrt{4-x}\)
d) \(\sqrt{x^{2^{ }}-1}\) = x - 1
a) \(\sqrt{x}< 3\)<=> x<9
b)\(\sqrt{4-x}\) ≤ 2 <=> 4 - x ≤ 4 <=> x≥0
c)\(\sqrt{x+2}=\sqrt{4-x}\) <=> x+2=4-x <=>2x=2<=>x=1
Vậy x=1
d)\(\sqrt{x^2-1}\)=x-1 <=> x\(^2\)-1=x\(^2\)-2x+1 <=> x\(^2\)-\(x^2\)-2x+1+1=0 <=> 2x=2 <=> x=1
Vậy x=1
a) ĐK: x ≥ 0
⇔ x<9 (TM)
b) ĐK: x ≤ 4
⇔ 4 - x < 4
⇔ x > 0
Vậy 0 < x ≤ 4
c) ĐK: -2 ≤ x ≤ 4
Bình phương 2 vế của phương trình, ta có:
x+2=4-x
⇔ 2x = 2
⇔ x=1 (TM)
d) ĐK: x ≥ 1
Bình phương 2 vế của phương trình, ta có:
\(\text{x}^{\text{2}}-11=x^2-2x+1\)
⇔ 2x = 12
⇔ x = 6 (TM)