thực hiện phép tính
\(\dfrac{3}{2x^2y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)
BT10: Thực hiện phép tính
\(a,\dfrac{4}{5}y^2x^5-x^3.x^2y^2\)
\(b,-xy^3-\dfrac{2}{7}y^2.xy\)
\(c,\dfrac{5}{6}xy^2z-\dfrac{1}{4}xyz.y\)
\(d,15x^4+7x^4-20x^2.x^2\)
\(e,\dfrac{1}{2}x^5y-\dfrac{3}{4}x^5y+xy.x^4\)
\(f,13x^2y^5-2x^2y^5+x^6\)
a: =-1/5x^5y^2
b: =-9/7xy^3
c: =7/12xy^2z
d: =2x^4
e: =3/4x^5y
f: =11x^2y^5+x^6
Thực hiện phép tính sau:
\(\dfrac{3}{2x^2+y}+\dfrac{5}{xy^2}+\dfrac{x}{y^3}\)
\(\dfrac{3}{2x^2+y}+\dfrac{5}{xy^2+}+\dfrac{x}{y^3}\)
=\(\dfrac{3xy^5}{xy^2.y^3\left(2x^2+y\right)+}+\dfrac{10y^3x^2+5y^4}{xy^2.y^3\left(2x^2+y\right)}+\dfrac{2x^4y^2+x^2y^3}{xy^2.y^3\left(2x^2+y\right)}\)
=\(\dfrac{3xy^5+10y^3x^2+5y^4+2x^4y^2+x^2y^3}{xy^5\left(2x^2+y\right)}\)
=\(\dfrac{3xy^5+11y^3x^2+5y^4+2x^4y^2}{xy^5\left(2x^2+y\right)}\)
ủa đáp án cứ sao sao:<
Thực hiện phép tính:
a) \(\dfrac{x+2y}{xy}\div\dfrac{x^2+4xy+4y^2}{2x^2}\)
b) \(\dfrac{4x^3-xy^2}{x^2+xy+y^2}\div\dfrac{\left(2x-y\right)^3}{x^3-y^3}\)
c) \(\dfrac{x+3}{x+2}\div\dfrac{3x+9}{2x-1}\div\dfrac{4x-2}{2x+4}\)
d) \(\dfrac{x+1}{x+2}\div\left(\dfrac{2x^2}{2x-3}\times\dfrac{3x+3}{4x^3}\right)\)
a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)
b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)
\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)
c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)
=1/3
d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)
\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)
làm tính trừ \(\dfrac{5x+y}{xy-5x^2}\)-\(\dfrac{35x^2+8xy+y^2}{xy^225x^3}\)
thực hiện phép tính \(\dfrac{x^3+6x^2-25}{x^3+3x^2-10x}\)-\(\dfrac{x+5}{2x-x^2}\)
b: \(=\dfrac{x^3+6x^2-25}{x\left(x+5\right)\left(x-2\right)}+\dfrac{x+5}{x\left(x-2\right)}\)
\(=\dfrac{x^3+6x^2-25+x^2+10x+25}{x\left(x+5\right)\left(x-2\right)}=\dfrac{x^3+7x^2+10x}{x\left(x+5\right)\left(x-2\right)}=\dfrac{x+2}{x-2}\)
Thực hiện phép tính , rút gọn bt
\(\dfrac{2x+y}{2x^2-xy}+\dfrac{16x}{y^2-4x^2}+\dfrac{2x-y}{2x^2+xy}\)
\(\dfrac{x+y}{2\left(x-y\right)}+\dfrac{2}{x^2+3}+\dfrac{1}{x+1}\)
Bài 1: Thực hiện phép tính
a, (5x-2y)(x\(^2\)-xy+1)
b, (x-1)(x+1)(x+2)
c, \(\dfrac{1}{2}\)x\(^2\)y\(^2\)(2x+y)(2x-y)
d, (x-\(\dfrac{1}{2}\))(x+\(\dfrac{1}{2}\))(4x-1)
e, (x-7)(x+5)-(2x+1)(3-x)
a: =5x^3-5x^2y+5x-2x^2y+2xy^2-2y
=5x^3-7x^2y+2xy^2+5x-2y
b: =(x^2-1)(x+2)
=x^3+2x^2-x-2
c: =1/2x^2y^2(4x^2-y^2)
=2x^4y^2-1/2x^2y^4
d: =(x^2-1/4)(4x-1)
=4x^3-x^2-x+1/4
e: =x^2-2x-35+(2x+1)(x-3)
=x^2-2x-35+2x^2-6x+x-3
=3x^2-7x-38
thực hiện phép tính
(x^2-y^2).\(\dfrac{x^2+y^2}{y^4-x^2y^2}\)
\(\dfrac{4x^2-9y^2}{xy}\):(2x-3y)
Ta có:(x2-y2)\(.\dfrac{x^2+y^2}{y^4-x^2y^2}\)\(=\left(x^2-y^2\right).\dfrac{x^2+y^2}{y^2\left(y^2-x^2\right)}=-\dfrac{x^2+y^2}{y^2}\)
Ta có:\(\dfrac{4x^2-9y^2}{xy}:\left(2x-3y\right)=\dfrac{\left(2x-3y\right)\left(2x+3y\right)}{xy}.\dfrac{1}{\left(2x-3y\right)}=\dfrac{2x+3y}{xy}\)
BT10: Thực hiện phép tính
\(a,-xyz^2\)\(-3xz.yz\)
\(b,-8x^2\)\(y-x.\left(xy\right)\)
\(c,4xy^2\) \(.x-\left(-12x^2y^2\right)\)
\(d,\dfrac{1}{2}x^2y^3-\dfrac{1}{3}x^2y.y^2\)
\(e,3xy\left(x^2y\right)-\dfrac{5}{6}x^3y^2\)
\(f,\dfrac{3}{4}x^4y-\dfrac{1}{6}xy.x^3\)
a: =-4xyz^2
b: =-9x^2y
c: =16x^2y^2
d: =1/6x^2y^3
e: =13/6x^3y^2
f: =7/12x^4y
a) -xyz² - 3xz.yz
= -xyz² - 3xyz²
= -4xyz²
b) -8x²y - x.(xy)
= -8x²y - x²y
= -9x²y
c) 4xy².x - (-12x²y²)
= 4x²y² + 12x²y²
= 16x²y²
d) 1/2 x²y³ - 1/3 x²y.y²
= 1/2 x²y³ - 1/3 x²y³
= 1/6 x²y³
e) 3xy(x²y) - 5/6 x³y²
= 3x³y² - 5/6 x³y²
= 13/6 x³y²
f) 3/4 x⁴y - 1/6 xy.x³
= 3/4 x⁴y - 1/6 x⁴y
= 7/12 x⁴y
Bài 2 : ( 3 đ) : Thực hiện phép tính
a/ \(\dfrac{3a^2-a+3}{a^3-1}+\dfrac{1-a}{a^2+a+1}+\dfrac{2}{1-a}\) b/ \(x-\dfrac{xy}{x+y}-\dfrac{x^3}{x^2y^2}\)
ĐKXĐ: \(a\ne1\)
a. \(\dfrac{3a^2-a+3}{a^3-1}+\dfrac{1-a}{a^2+a+1}+\dfrac{2}{1-a}\)
\(=\dfrac{3a^2-a+3+\left(1-a\right).\left(a-1\right)-2.\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{3a^2-a+3-a^2+2a-1-2a^2-2a-2}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{-a+1}{\left(a-1\right).\left(a^2+a+1\right)}\)
\(=-\dfrac{1}{a^2+a+1}\)
a) Ta có: \(\dfrac{3a^2-a+3}{a^3-1}+\dfrac{1-a}{a^2+a+1}+\dfrac{2}{1-a}\)
\(=\dfrac{3a^2-a+3}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{\left(a-1\right)^2}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{2\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{3a^2-a+3-\left(a^2-2a+1\right)-2a^2-2a-2}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{a^2-3a+1-a^2+2a-1}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\dfrac{-a}{\left(a-1\right)\left(a^2+a+1\right)}\)
b) Ta có: \(x-\dfrac{xy}{x+y}-\dfrac{x^3}{x^2y^2}\)
\(=x-\dfrac{xy}{x+y}-\dfrac{x}{y^2}\)
\(=\dfrac{xy^2\cdot\left(x+y\right)}{y^2\cdot\left(x+y\right)}+\dfrac{y^2\cdot xy}{y^2\cdot\left(x+y\right)}-\dfrac{x\cdot\left(x+y\right)}{y^2\cdot\left(x+y\right)}\)
\(=\dfrac{x^2y^2+xy^3+xy^3-x^2-xy}{y^2\cdot\left(x+y\right)}\)
\(=\dfrac{x^2y^2+2xy^3-x^2-xy}{y^2\cdot\left(x+y\right)}\)