Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc k10
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 5 2023 lúc 10:12

a: =-1/5x^5y^2

b: =-9/7xy^3

c: =7/12xy^2z

d: =2x^4

e: =3/4x^5y

f: =11x^2y^5+x^6

Mai Anh Nguyễn
Xem chi tiết
Đỗ Tuệ Lâm
16 tháng 12 2021 lúc 16:41

\(\dfrac{3}{2x^2+y}+\dfrac{5}{xy^2+}+\dfrac{x}{y^3}\)

=\(\dfrac{3xy^5}{xy^2.y^3\left(2x^2+y\right)+}+\dfrac{10y^3x^2+5y^4}{xy^2.y^3\left(2x^2+y\right)}+\dfrac{2x^4y^2+x^2y^3}{xy^2.y^3\left(2x^2+y\right)}\)

=\(\dfrac{3xy^5+10y^3x^2+5y^4+2x^4y^2+x^2y^3}{xy^5\left(2x^2+y\right)}\)

=\(\dfrac{3xy^5+11y^3x^2+5y^4+2x^4y^2}{xy^5\left(2x^2+y\right)}\)

 

   ủa đáp án cứ sao sao:<

 

Tuyết Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 5 2022 lúc 23:14

a: \(=\dfrac{x+2y}{xy}\cdot\dfrac{2x^2}{\left(x+2y\right)^2}=\dfrac{2x}{y\left(x+2y\right)}\)

b: \(=\dfrac{x\left(4x^2-y^2\right)}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(2x-y\right)^3}\)

\(=\dfrac{x\left(x-y\right)\left(2x+y\right)\left(2x-y\right)}{\left(2x-y\right)^3}\)

\(=\dfrac{x\left(x-y\right)\left(2x+y\right)}{\left(2x-y\right)^2}\)

c: \(=\dfrac{x+3}{x+2}\cdot\dfrac{2x-1}{3\left(x+3\right)}\cdot\dfrac{2\left(x+2\right)}{2\left(2x-1\right)}\)

=1/3

d: \(=\dfrac{x+1}{x+2}:\left(\dfrac{1}{2x}\cdot\dfrac{3x+3}{2x-3}\right)\)

\(=\dfrac{x+1}{x+2}\cdot\dfrac{2x\left(2x-3\right)}{3\left(x+1\right)}=\dfrac{2x\left(2x-3\right)}{3\left(x+2\right)}\)

Trần Huỳnh Khả My
Xem chi tiết
ngọc quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 12 2021 lúc 20:59

b: \(=\dfrac{x^3+6x^2-25}{x\left(x+5\right)\left(x-2\right)}+\dfrac{x+5}{x\left(x-2\right)}\)

\(=\dfrac{x^3+6x^2-25+x^2+10x+25}{x\left(x+5\right)\left(x-2\right)}=\dfrac{x^3+7x^2+10x}{x\left(x+5\right)\left(x-2\right)}=\dfrac{x+2}{x-2}\)

Vũ Thảo Anh
Xem chi tiết
Nguyenngocdiem
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 6 2023 lúc 16:22

a: =5x^3-5x^2y+5x-2x^2y+2xy^2-2y

=5x^3-7x^2y+2xy^2+5x-2y

b: =(x^2-1)(x+2)

=x^3+2x^2-x-2

c: =1/2x^2y^2(4x^2-y^2)

=2x^4y^2-1/2x^2y^4

d: =(x^2-1/4)(4x-1)

=4x^3-x^2-x+1/4

e: =x^2-2x-35+(2x+1)(x-3)

=x^2-2x-35+2x^2-6x+x-3

=3x^2-7x-38

Hoàng Huy
Xem chi tiết
Edogawa Conan
29 tháng 7 2021 lúc 8:27

Ta có:(x2-y2)\(.\dfrac{x^2+y^2}{y^4-x^2y^2}\)\(=\left(x^2-y^2\right).\dfrac{x^2+y^2}{y^2\left(y^2-x^2\right)}=-\dfrac{x^2+y^2}{y^2}\)

Ta có:\(\dfrac{4x^2-9y^2}{xy}:\left(2x-3y\right)=\dfrac{\left(2x-3y\right)\left(2x+3y\right)}{xy}.\dfrac{1}{\left(2x-3y\right)}=\dfrac{2x+3y}{xy}\)

Nguyễn Ngọc k10
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 5 2023 lúc 0:38

a: =-4xyz^2

b: =-9x^2y

c: =16x^2y^2

d: =1/6x^2y^3

e: =13/6x^3y^2

f: =7/12x^4y

Kiều Vũ Linh
30 tháng 5 2023 lúc 7:27

a) -xyz² - 3xz.yz

= -xyz² - 3xyz²

= -4xyz²

b) -8x²y - x.(xy)

= -8x²y - x²y

= -9x²y

c) 4xy².x - (-12x²y²)

= 4x²y² + 12x²y²

= 16x²y²

d) 1/2 x²y³ - 1/3 x²y.y²

= 1/2 x²y³ - 1/3 x²y³

= 1/6 x²y³

e) 3xy(x²y) - 5/6 x³y²

= 3x³y² - 5/6 x³y²

= 13/6 x³y²

f) 3/4 x⁴y - 1/6 xy.x³

= 3/4 x⁴y - 1/6 x⁴y

= 7/12 x⁴y

Đức Anh Ramsay
Xem chi tiết
Nguyễn Phương Linh
17 tháng 2 2021 lúc 13:05

ĐKXĐ: \(a\ne1\)

a. \(\dfrac{3a^2-a+3}{a^3-1}+\dfrac{1-a}{a^2+a+1}+\dfrac{2}{1-a}\)

\(=\dfrac{3a^2-a+3+\left(1-a\right).\left(a-1\right)-2.\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{3a^2-a+3-a^2+2a-1-2a^2-2a-2}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{-a+1}{\left(a-1\right).\left(a^2+a+1\right)}\)

\(=-\dfrac{1}{a^2+a+1}\)

Nguyễn Lê Phước Thịnh
17 tháng 2 2021 lúc 13:07

a) Ta có: \(\dfrac{3a^2-a+3}{a^3-1}+\dfrac{1-a}{a^2+a+1}+\dfrac{2}{1-a}\)

\(=\dfrac{3a^2-a+3}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{\left(a-1\right)^2}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{2\left(a^2+a+1\right)}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{3a^2-a+3-\left(a^2-2a+1\right)-2a^2-2a-2}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{a^2-3a+1-a^2+2a-1}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{-a}{\left(a-1\right)\left(a^2+a+1\right)}\)

b) Ta có: \(x-\dfrac{xy}{x+y}-\dfrac{x^3}{x^2y^2}\)

\(=x-\dfrac{xy}{x+y}-\dfrac{x}{y^2}\)

\(=\dfrac{xy^2\cdot\left(x+y\right)}{y^2\cdot\left(x+y\right)}+\dfrac{y^2\cdot xy}{y^2\cdot\left(x+y\right)}-\dfrac{x\cdot\left(x+y\right)}{y^2\cdot\left(x+y\right)}\)

\(=\dfrac{x^2y^2+xy^3+xy^3-x^2-xy}{y^2\cdot\left(x+y\right)}\)

\(=\dfrac{x^2y^2+2xy^3-x^2-xy}{y^2\cdot\left(x+y\right)}\)