Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc k10
Xem chi tiết
HT.Phong (9A5)
11 tháng 7 2023 lúc 6:36

\(M=\left(7-2x\right)\left(4x^2+14x+49\right)-\left(64-8x^3\right)\)

\(M=\left(7-2x\right)\left[\left(2x\right)^2+2x\cdot7+7^2\right]-\left(64-8x^3\right)\)

\(M=\left[7^3-\left(2x\right)^3\right]-\left(64-8x^3\right)\)

\(M=343-8x^3-64+8x^3\)

\(M=279\)

Vậy M có giá trị 279 với mọi x

\(P=\left(2x-1\right)\left(4x^2-2x+1\right)-\left(1-2x\right)\left(1+2x+4x^2\right)\)

\(P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3\)

\(P=16x^3-8x^2+4x-2\)

Thay \(x=10\) vào P ta có:

\(P=16\cdot10^3-8\cdot10^2+4\cdot10-2=15238\)

Vậy P có giá trị 15238 tại x=10

Nguyễn Lê Phước Thịnh
10 tháng 7 2023 lúc 20:50

a: M=343-8x^3-64+8x^3=279

b: P=8x^3-4x^2+2x-4x^2+2x-1-1+8x^3

=16x^3-8x^2+4x-2

=16*10^3-8*10^2+4*10-2=15238

Ngọc Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 9 2023 lúc 18:50

loading...  loading...  

Nguyễn thành Đạt
8 tháng 9 2023 lúc 19:22

Bạn xem lại đề nhé.

a) \(A=x^2+5y^2+2xy-4x-8y+2015\)

 

\(A=x^2-4x+4-2y\left(x-2\right)+y^2+2011+4y^2\)

\(A=\left(x-2\right)^2-2y\left(x-2\right)+y^2+2011+4y^2\)

\(A=\left(x-2-y\right)^2+4y^2+2011\)

Vì \(\left(x-y-2\right)^2\ge0;4y^2\ge0\)

\(\Rightarrow A_{min}=2011\)

Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}x-y-2=0\\4y^2=0\end{matrix}\right.\Leftrightarrow}\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Nguyễn thành Đạt
8 tháng 9 2023 lúc 19:27

b) \(B=\left(x-2012\right)^2+\left(x+2013\right)^2\)

\(B=x^2-4024x+2012^2+x^2+4026x+2013^2\)

\(B=2x^2+2x+2012^2+2013^2\)

\(B=2\left(x^2+x+\dfrac{1}{4}\right)+2012^2+2013^2-\dfrac{1}{2}\)

\(B=2\left(x+\dfrac{1}{2}\right)^2+2012^2+2013^2-\dfrac{1}{2}\)

\(\Rightarrow B_{min}=2012^2+2013^2-\dfrac{1}{2}\)

Dấu bằng xảy ra : \(\Leftrightarrow x=-\dfrac{1}{2}\)

37. Trần Đồng Thảo Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 9 2021 lúc 22:41

1: Ta có: \(4x^2-36=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

2: Ta có: \(\left(x-1\right)^2+x\left(4-x\right)=11\)

\(\Leftrightarrow x^2-2x+1+4x-x^2=11\)

\(\Leftrightarrow2x=10\)

hay x=5

Mai Thị Thúy
Xem chi tiết
Minh Hiếu
Xem chi tiết
Nguyễn Hoàng Minh
5 tháng 10 2021 lúc 21:12

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

Akai Haruma
5 tháng 10 2021 lúc 21:30

1a. Đề lỗi

1b. 

PT $\Leftrightarrow (x+2)^2+(y-1)^2=25$

$\Leftrightarrow (x+2)^2=25-(y-1)^2\leq 25$

$(x+2)^2$ là scp không vượt quá $25$ nên có thể nhận các giá trị $0,1,4,9,16,25$

Nếu $(x+2)^2=0\Rightarrow (y-1)^2=25$

$\Rightarrow (x,y)=(-2, 6), (-2, -4)$
Nếu $(x+2)^2=1\Rightarrow (y-1)^2=24$ không là scp (loại)

Nếu $(x+2)^2=4\Rightarrow (y-1)^2=21$ không là scp (loại)

Nếu $(x+2)^2=9\Rightarrow (y-1)^2=16$

$\Rightarrow (x,y)=(1, 5), (1, -3), (-5,5), (-5, -3)$

Nếu $(x+2)^2=25\Rightarrow (y-1)^2=0$

$\Rightarrow (x,y)=(3, 1), (-7, 1)$

Akai Haruma
5 tháng 10 2021 lúc 21:33

1c. 

Vì $x^2$ là scp nên $x^2\equiv 0,1\pmod 3$

$3(y-1)^2\equiv 0\pmod 3$

$\Rightarrow x^2+3(y-1)^2\equiv 0,1\pmod 3$

Mà $2021\equiv 2\pmod 3$
Do đó pt $x^2+3(y-1)^2=2021$ vô nghiệm

1d.

Ta thấy:

$(3x-1)^{2020}$ là scp không chia hết cho $3$ nên $(3x-1)^{2020}\equiv 1\pmod 3$

$18(y-2)^{2019}\equiv 0\pmod 3$

$\Rightarrow (3x-1)^{2020}+18(y-2)^{2019}\equiv 1\pmod 3$
Mà $2019^{2020}\equiv 0\pmod 3$
Do đó pt vô nghiệm.

Nguyễn Tuyết Mai
Xem chi tiết
nguyen van huy
22 tháng 7 2016 lúc 22:57

\(1\)\(70:\frac{4x+720}{x}=\frac{1}{2}\)

\(\Leftrightarrow\frac{4x+720}{x}=70:\frac{1}{2}\)

\(\Leftrightarrow\frac{4x+720}{x}=140\)

\(\Leftrightarrow\left(4x+720\right):x=140\)

\(\Leftrightarrow4x+720=140.x\)

\(\Leftrightarrow4x-140x=-720\)

\(\Leftrightarrow x.\left(-136\right)=-720\)

\(\Leftrightarrow x=-720:\left(-136\right)\)

\(\Leftrightarrow x=\frac{90}{17}\)

\(2\)) Mình đang nghĩ

trung dũng trần
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 4 2020 lúc 13:45

a) Ta có: \(\left(x-1\right)^2+x^2-1=\left(x+1\right)\left(x+3\right)\)

\(\Leftrightarrow\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-1+x+1\right)=\left(x+1\right)\left(x+3\right)\)

\(\Leftrightarrow\left(x-1\right)\cdot2x-\left(x+1\right)\left(x+3\right)=0\)

\(\Leftrightarrow2x^2-2x-\left(x^2+4x+3\right)=0\)

\(\Leftrightarrow2x^2-2x-x^2-4x-3=0\)

\(\Leftrightarrow x^2-6x-3=0\)

\(\Leftrightarrow x^2-6x+9-12=0\)

\(\Leftrightarrow\left(x-3\right)^2-12=0\)

\(\Leftrightarrow\left(x-3\right)^2=12\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=\sqrt{12}\\x-3=-\sqrt{12}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{12}+3=3+2\sqrt{3}\\x=-\sqrt{12}+3=3-2\sqrt{3}\end{matrix}\right.\)

Vậy: \(x=3\pm2\sqrt{3}\)

Nguyễn Thị Thu Hằng
Xem chi tiết
Lê Thu Hiền
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết