\(3\sqrt{2x}-2\sqrt{18x}+\sqrt{32x}=2\)
\(3\sqrt{2x}-\sqrt{18x}+\dfrac{1}{2}\sqrt{32x}\)
\(3x\sqrt{2x}-3\sqrt{2x}+2\sqrt{2x}\)
\(2\sqrt{2x}\)
3√2x−√18x+12√32x
=\(3\sqrt{2x}-3\sqrt{2x}+48\sqrt{2x}\)
=\(48\sqrt{2x}\)
\(3\sqrt{2x}-\sqrt{18x}+\dfrac{1}{2}\sqrt{32x}\)
\(=3\sqrt{2x}-3\sqrt{2x}+\dfrac{1}{2}\cdot4\sqrt{2x}\)
\(=2\sqrt{2x}\)
\(3\sqrt{2x}-\sqrt{18x}+\dfrac{1}{2}\sqrt{32x}\)
\(3\sqrt{2x}-\sqrt{18x}+\dfrac{1}{2}\sqrt{32x}\)
\(=3\sqrt{2x}-3\sqrt{2x}+\dfrac{1}{2}\cdot4\sqrt{2x}\)
\(=2\sqrt{2x}\)
M= \(\dfrac{3}{2}\sqrt{32x}-\dfrac{1}{3}\sqrt{18x}+\dfrac{2}{5}\sqrt{50x}-4\sqrt{2x}\) (x lớn hơn hoặc bằng 0)
giải chi tiết giúp mk vớiiiii ạ
\(M=\dfrac{3}{2}\cdot4\sqrt{2x}-\dfrac{1}{3}\cdot3\sqrt{2x}+\dfrac{2}{5}\cdot5\sqrt{2x}-4\sqrt{2x}=6\sqrt{2x}-\sqrt{2x}+2\sqrt{2x}-4\sqrt{2x}=3\sqrt{2x}\)
Rút gọn biểu thức
M=\(\dfrac{3}{2}\sqrt{32x}-\dfrac{1}{3}\sqrt{18x}+\dfrac{2}{5}\sqrt{50x}-4\sqrt{2x}\) (x ≥ 0)
giải chi tiết giúp mk vớiiiiii ạ
\(M=6\sqrt{2x}-\sqrt{2x}+2\sqrt{2x}-4\sqrt{2x}=3\sqrt{2x}\)
a) 2\sqrt(32x + 16) - 3\sqrt(18x + 9) = \sqrt(8x + 4) - 6
ĐKXĐ: x>=-1/2
\(2\sqrt{32x+16}-3\sqrt{18x+9}=\sqrt{8x+4}-6\)
=>\(2\cdot4\sqrt{2x+1}-3\cdot3\sqrt{2x+1}-2\sqrt{2x+1}=-6\)
=>\(8\sqrt{2x+1}-9\sqrt{2x+1}-2\sqrt{2x+1}=-6\)
=>\(-3\sqrt{2x+1}=-6\)
=>\(\sqrt{2x+1}=2\)
=>2x+1=4
=>2x=3
=>\(x=\dfrac{3}{2}\left(nhận\right)\)
Giải phương trình:
\(\sqrt{18x-27}-\dfrac{1}{2}\sqrt{32x-48}+3\sqrt{\dfrac{16x-24}{2}}=1\)
\(ĐK:x\ge\dfrac{3}{2}\\ PT\Leftrightarrow3\sqrt{2x-3}-2\sqrt{2x-3}+6\sqrt{2x-3}=1\\ \Leftrightarrow7\sqrt{2x-3}=1\\ \Leftrightarrow\sqrt{2x-3}=\dfrac{1}{7}\\ \Leftrightarrow2x-3=\dfrac{1}{49}\Leftrightarrow x=\dfrac{74}{49}\left(tm\right)\)
d) \(\sqrt{x^2-12x+36}-x=3\)
e) \(\sqrt{x^2-4x+5}-1=x\)
f) \(\sqrt{x^2-6x+9}+x=3\)
h) \(\sqrt{18x}+\sqrt{32x}-14=0\)
k) \(\sqrt{6x-3}+2=\sqrt{3}\)
h: \(\sqrt{18x}+\sqrt{32x}-14=0\)
\(\Leftrightarrow7\sqrt{2x}=14\)
hay x=2
tìm x:
\sqrt(8x-4)-2\sqrt(18x-9)+2\sqrt(32x-16)=12
`\sqrt{8x-4}-2\sqrt{18x-9}+2\sqrt{32x-16}=12` `ĐK: x >= 1/2`
`<=>2\sqrt{2x-1}-6\sqrt{2x-1}+8\sqrt{2x-1}=12`
`<=>4\sqrt{2x-1}=12`
`<=>\sqrt{2x-1}=3`
`<=>2x-1=9`
`<=>x=5` (t/m)
Vậy `S={5}`.
\(\Leftrightarrow2\sqrt{2x-1}-2\cdot3\sqrt{2x-1}+2\cdot4\sqrt{2x-1}=12\)
=>\(4\sqrt{2x-1}=12\)
=>\(\sqrt{2x-1}=3\)
=>2x-1=9
=>2x=10
=>x=5
\(\sqrt{8x-4}-2\sqrt{18x-9}+2\sqrt{32x-16}=12\) (ĐK: \(x\ge\dfrac{1}{2}\))
\(\Leftrightarrow2\sqrt{2x-1}-2\cdot3\sqrt{2x-1}+2\cdot4\sqrt{2x-1}=12\)
\(\Leftrightarrow2\sqrt{2x-1}-6\sqrt{2x-1}+8\sqrt{2x-1}=12\)
\(\Leftrightarrow\left(2-6+8\right)\sqrt{2x-1}=12\)
\(\Leftrightarrow4\sqrt{2x-1}=12\)
\(\Leftrightarrow\sqrt{2x-1}=12:4\)
\(\Leftrightarrow\sqrt{2x-1}=3\)
\(\Leftrightarrow2x-1=9\)
\(\Leftrightarrow2x=9+1\)
\(\Leftrightarrow2x=10\)
\(\Leftrightarrow x=5\left(tm\right)\)
Vậy \(x=5\)