Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Chau Pham
Xem chi tiết
Dân Chơi Đất Bắc=))))
26 tháng 10 2021 lúc 18:43

a)2x-1=x+1

x=2

Vậy x=2

Dân Chơi Đất Bắc=))))
26 tháng 10 2021 lúc 18:44

b)\(\sqrt{x+3}=\sqrt{25}\)

x+3=5

x=2

Vậy x=2

Dân Chơi Đất Bắc=))))
26 tháng 10 2021 lúc 18:44

c)x+2=7

x=5

Vậy x=5

Chau Pham
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 11 2021 lúc 7:07

\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)

\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)

Trần Mun
Xem chi tiết
Akai Haruma
29 tháng 12 2023 lúc 17:15

Lời giải:

a. $P=1+\sqrt{(1-\sqrt{2})^2}=1+|1-\sqrt{2}|=1+\sqrt{2}-1=\sqrt{2}$

b.

$\sqrt{x-1}=3$ (đk: $x\geq 1$)

$\Leftrightarrow x-1=3^2=9$

$\Leftrightarrow x=9+1=10$ (thỏa mãn)

Ngọc Vũ
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 11:03

1: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\notin\left\{4;9\right\}\end{matrix}\right.\)

Ta có: \(A=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)

Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 11:05

\(1,A=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ A=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\left(x\ge0;x\ne4;x\ne9\right)\\ 2,A< 1\Leftrightarrow\dfrac{\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}-3}< 0\\ \Leftrightarrow\dfrac{4}{\sqrt{x}-3}< 0\Leftrightarrow\sqrt{x}-3< 0\Leftrightarrow0\le x< 9\)

hàn hàn
Xem chi tiết
HT.Phong (9A5)
12 tháng 7 2023 lúc 11:29

a) \(\sqrt{2x-1}=\sqrt{5}\) (ĐK: \(x\ge\dfrac{1}{2}\))

\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\left(tm\right)\)

b) \(\sqrt{x-10}=-2\) 

⇒ Giá trị của biểu thức trong căn luôn dương nên phương trình vô nghiệm

c) \(\sqrt{\left(x-5\right)^2}=3\) 

\(\Leftrightarrow\left|x-5\right|=3\)

TH1: \(\left|x-5\right|=x-5\) với \(x-5\ge0\Leftrightarrow x\ge5\)

Pt trở thành:

\(x-5=3\) (ĐK: \(x\ge5\))

\(\Leftrightarrow x=3+5\)

\(\Leftrightarrow x=8\left(tm\right)\)

TH2: \(\left|x-5\right|=-\left(x-5\right)\) với \(x-5< 0\Leftrightarrow x< 0\)

Pt trở thành:

\(-\left(x-5\right)=3\) (ĐK: \(x< 5\))

\(\Leftrightarrow-x+5=3\)

\(\Leftrightarrow-x=-2\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy: \(S=\left\{2;8\right\}\)

Minh Lệ
12 tháng 7 2023 lúc 11:36

a/ ĐKXĐ: 2x - 1 >= 0 <=> 2x > 1 <=> x>= 1/2

\(\sqrt{2x-1}=\sqrt{5}\Leftrightarrow2x-1=5\Leftrightarrow2x=6\Leftrightarrow x=3\left(tm\right)\)

b/ ĐKXĐ: x - 10 >= 0 <=> x >= 10

Biểu thức trong căn luôn nhận giá trị dương => vô nghiệm

c/ ĐKXĐ: x - 5 >=0 <=> x >= 5

\(\sqrt{x-5}=3\Leftrightarrow x-5=9\Leftrightarrow x=14\left(tm\right)\)

Nguyễn Ngọc Anh
Xem chi tiết
Xyz OLM
16 tháng 9 2023 lúc 6:07

\(x=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}}\)

\(\Leftrightarrow x=\sqrt{5+\sqrt{13+x}}\) (\(x\ge0\))

\(\Leftrightarrow x^2=5+\sqrt{13+x}\)

\(\Leftrightarrow x^2-9=\sqrt{13+x}-4\)

\(\Leftrightarrow\left(x-3\right).\left(x+3\right)=\dfrac{x-3}{\sqrt{13+x}+4}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x+3=\dfrac{1}{\sqrt{x+13}+4}\left(∗\right)\end{matrix}\right.\)

Xét (*) ta có VT \(\ge3\) (1)

mà \(VP=\dfrac{1}{\sqrt{x+13}+4}\le\dfrac{1}{4}\) (2)

Từ (1) và (2) dễ thấy (*) vô nghiệm 

Hay x = 3

 

 

Hùng Chu
Xem chi tiết
ILoveMath
28 tháng 11 2021 lúc 21:53

\(a,ĐKXĐ:x\ge1\\ 13-\sqrt{x-1}=10\\ \Leftrightarrow\sqrt{x-1}=3\\ \Leftrightarrow x-1=9\\ \Leftrightarrow x=10\\ b,ĐKXĐ:x\in R\\ \sqrt{\left(2x-1\right)^2}-1=3\\ \Leftrightarrow\left|2x-1\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=-4\\2x-1=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{5}{2}\end{matrix}\right.\)

nguyễn anh thơ
Xem chi tiết
shitbo
15 tháng 10 2019 lúc 19:59

\(\sqrt{9x-9}+1=13\Leftrightarrow3\sqrt{x-1}=12\Leftrightarrow\sqrt{x-1}=4\Leftrightarrow x-1=16\Leftrightarrow x=17\)

\(2.\text{bạn tự tìm đk}\)

\(A=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)

\(A=\frac{2\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\left(\sqrt{x}-2\right)=\sqrt{x}\left(\sqrt{x}-2\right)< 0\Leftrightarrow x-2\sqrt{x}< 0\Leftrightarrow\left(\sqrt{x}-1\right)^2< 1\Leftrightarrow-1< \sqrt{x}-1< 1\)
\(\Leftrightarrow0< x< 4\)

Nguyễn Công Tỉnh
15 tháng 10 2019 lúc 20:05

Câu 1:

\(\sqrt{9x-9}+1=13\)\(ĐKXĐ:x\ge1\)

\(\Leftrightarrow\sqrt{9\left(x-1\right)}=12\)

\(\Leftrightarrow3\sqrt{x-1}=12\)

\(\Leftrightarrow\sqrt{x-1}=4\)

\(\Leftrightarrow x-1=16\)

\(\Leftrightarrow x=17\)(tm ĐKXĐ)

Câu 2 

ĐKXĐ: \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(A=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x-\sqrt{x}}\right):\left(\frac{x+\sqrt{x}}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(=\left(\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\sqrt{x}-2\right)\)

\(=\left(\frac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\frac{1}{\sqrt{x}-2}\)

\(=\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\frac{1}{\sqrt{x}-2}\)

\(=\frac{1}{x-2\sqrt{x}}\)

b Để A có giá trị âm \(\Rightarrow\frac{1}{x-2\sqrt{x}}< 0\)

vì 1>0

\(\Rightarrow x-2\sqrt{x}< 0\)

\(\Leftrightarrow0< \sqrt{x}< 2\)

\(\Leftrightarrow0< x< 4\)

kết hợp ĐKXĐ: \(\Rightarrow1< x< 4\)

Nguyễn Ngọc Minh
Xem chi tiết
Ngo Anh Ngoc
Xem chi tiết
vũ tiền châu
15 tháng 8 2017 lúc 23:41

bài 2 là bài 21 trong nâng cao phát triển toán 9, chắc bạn có chứ

Nguyễn Quốc Gia Huy
16 tháng 8 2017 lúc 8:04

Bài 1: Ta có:

\(x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}}=5+\sqrt{13+x}\)

\(\Rightarrow x^2-5=\sqrt{13+x}\Rightarrow x^4-10x^2+25=13+x\Leftrightarrow x^4-10x^2-x+12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2-x-4\right)=0\)

Pt này có 1 nghiệm x = 3 và 3 nghiệm nhỏ hơn 2.

Vì \(x>\sqrt{4}=2\)

Vậy x = 3.

Phan Văn Hiếu
16 tháng 8 2017 lúc 8:38

b2

\(\sqrt{1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}}=\sqrt{1+\frac{1}{x^2}+\frac{1}{\left(x+1\right)^2}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x\left(x+1\right)}}=\sqrt{\left(1+\frac{1}{x}-\frac{1}{x+1}\right)^2}=1+\frac{1}{x}-\frac{1}{x+1}\)

\(\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}=1+\frac{1}{2}-\frac{1}{3}\)

.....................................................................

\(\sqrt{1+\frac{1}{2013^2}+\frac{1}{2014^2}}=1+\frac{1}{2013}-\frac{1}{2014}\)

BT = 2012-1/2014