Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
tran duc huy
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 11 2019 lúc 0:01

\(\frac{cosa}{1+sina}+\frac{sina}{cosa}=\frac{cos^2a+sina\left(1+sina\right)}{cosa\left(1+sina\right)}=\frac{1+sina}{cosa\left(1+sina\right)}=\frac{1}{cosa}\)

\(\frac{sin^2a+cos^2a+2sina.cosa}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{\left(sina+cosa\right)^2}{\left(sina-cosa\right)\left(sina+cosa\right)}=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{cosa}+1}{\frac{sina}{cosa}-1}=\frac{tana+1}{tana-1}\)

\(\left(sin^2a\right)^3+\left(cos^2a\right)^3=\left(sin^2a+cos^2a\right)^3-3sin^2a.cos^2a\left(sin^2a+cos^2a\right)\)

\(=1-3sin^2a.cos^2a\)

\(sin^2a-tan^2a=tan^4a\left(\frac{sin^2a}{tan^4a}-\frac{1}{tan^2a}\right)=tan^4a\left(sin^2a.\frac{cos^2a}{sin^2a}-\frac{1}{tan^2a}\right)\)

\(=tan^4a\left(cos^2a-cot^2a\right)\) bạn ghi sai đề câu này

\(\frac{tan^3a}{sin^2a}-\frac{1}{sina.cosa}+\frac{cot^3a}{cos^2a}=tan^3a\left(1+cot^2a\right)-\frac{1}{sina.cosa}+cot^3a\left(1+tan^2a\right)\)

\(=tan^3a+tana-\frac{1}{sina.cosa}+cot^3a+cota\)

\(=tan^3a+cot^3a+\frac{sina}{cosa}+\frac{cosa}{sina}-\frac{1}{sina.cosa}\)

\(=tan^3a+cot^3a+\frac{sin^2a+cos^2a-1}{sina.cosa}=tan^3a+cot^3a\)

Khách vãng lai đã xóa
Zero Two
Xem chi tiết
M A S T E R🍎『LⓊƒƒỾ 』⁀...
26 tháng 7 2021 lúc 15:50

a) cos = 15/7

tan = 8/15

cot = 15/8

b) cos = 4/5

tan = 3/5

cot = 4/5

Khách vãng lai đã xóa
xữ nữ của tôi
Xem chi tiết
Phạm Thư
Xem chi tiết
Thanh Vy
9 tháng 10 2016 lúc 13:56

a) sin anpha = 2/3 => góc anpha = 42o 

cos 42o = 0,743

tan 42o =  0,9

cot  42o = 1/tan 42o = 1/0,9 = 1,111

b) tan anpha + cot anpha = 3

<=> tan anpha + 1/tan anpha = 3

<=> tananpha = 2

<=> tan anpha = \(\sqrt{2}\)

=> góc anpha =  55

Ta có: a = sin 55o . cos 55o

<=> a = 0,469

Văn Vân Anh
Xem chi tiết
Hoàng Tử Hà
31 tháng 7 2019 lúc 23:07

cái câu 1 kia lạ thật, phần phía trc có ngoặc thì phải nhân vs hạng tử nào đó chứ nhỉ? Và mk tính ra kq là \(-\cos^22\alpha\)

\(VT=\cos^4\alpha+\sin^4\alpha-2\cos^6\alpha-2\sin^6\alpha\)

\(=\sin^4\alpha\left(1-2\sin^2\alpha\right)-\cos^4\alpha\left(2\cos^2\alpha-1\right)\)

\(=\sin^4\alpha.\cos2\alpha-\cos^4\alpha.\cos2\alpha\)

\(=\cos2\alpha\left(\sin^2\alpha.\sin^2\alpha-\cos^4\alpha\right)\)

\(=\cos2\alpha.\left[\left(1-\cos^2\alpha\right)^2-\cos^4\alpha\right]\)

\(=\cos2\alpha.\left(1-2\cos^2\alpha\right)\)

\(=-\cos^22\alpha\)

2/ \(VT=\frac{1-\cos^2\alpha+\cos^2\alpha}{1+\sin2\alpha}=\frac{1}{1+\sin2\alpha}\)

\(VP=\frac{\frac{\sin\alpha}{\cos\alpha}-1}{\frac{\sin\alpha}{\cos\alpha}+1}=\frac{\frac{\sin\alpha-\cos\alpha}{\cos\alpha}}{\frac{\sin\alpha+\cos\alpha}{\cos\alpha}}=\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)

hmm, câu 2 có vẻ vô lí, bn thử nhân chéo lên mà xem, nó ko ra KQ = nhau đâu

Akai Haruma
31 tháng 7 2019 lúc 23:10

1)

\((\cos^4a+\sin ^4a)-2(\cos^6a+\sin ^6a)=(\cos ^4a+\sin ^4a)-2(\cos ^2a+\sin ^2a)(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)

\(=(\cos ^4a+\sin ^4a)-2(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)

\(=-(\cos ^4a-2\sin ^2a\cos ^2a+\sin ^4a)=-(\cos ^2a-\sin ^2a)^2=-\cos ^22a\)

(bạn xem lại đề. Nếu thay $(\cos ^4a+\sin ^4a)$ thành $3(\cos ^4a+\sin ^4a)$ thì kết quả thu được là $(\cos ^2a+\sin ^2a)^2=1$ như yêu cầu)

2) Sửa đề:

\(\frac{\sin ^2a-\cos ^2a}{1+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{\sin ^2a+\cos ^2a+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{(\sin a+\cos a)^2}\)

\(=\frac{\sin a-\cos a}{\sin a+\cos a}=\frac{\frac{\sin a}{\cos a}-1}{\frac{\sin a}{\cos a}+1}=\frac{\tan a-1}{\tan a+1}\)

Bạn lưu ý viết đề bài chuẩn hơn.

Akai Haruma
31 tháng 7 2019 lúc 23:17

3)

\(\sin ^4a+\cos ^4a-\sin ^6a-\cos ^6a=\sin ^4a+\cos ^4a-[(\sin ^2a)^3+(\cos ^2a)^3]\)

\(=\sin ^4a+\cos ^4a-(\sin ^2a+\cos ^2a)(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)\)

\(=\sin ^4a+\cos ^4a-(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)\)

\(=\sin ^2a\cos ^2a\) (đpcm)

4)

\(\frac{\cos a}{1+\sin a}+\tan a=\frac{\cos a}{1+\sin a}+\frac{\sin a}{\cos a}=\frac{\cos ^2a+\sin^2a+\sin a}{\cos a(1+\sin a)}=\frac{1+\sin a}{\cos a(1+\sin a)}=\frac{1}{\cos a}\)

5)

\(\frac{\tan a}{1-\tan ^2a}.\frac{\cot ^2a-1}{\cot a}=\frac{\tan a}{(tan a\cot a)^2-\tan ^2a}.\frac{\cot ^2a-1}{\cot a}\)

\(=\frac{\tan a}{\tan ^2a(\cot ^2a-1)}.\frac{\cot ^2a-1}{\cot a}=\frac{1}{\tan a\cot a}=\frac{1}{1}=1\)

-----------------------------------

Mấu chốt của các bài này là bạn sử dụng 2 công thức sau:

1. \(\sin ^2x+\cos^2x=1\)

2. \(\tan x.\cot x=1\)

Trương Hoàng Ánh Dương
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2020 lúc 21:29

\(sina=\frac{3}{5}\Rightarrow sin^2a=\frac{9}{25}\) ; \(cos^2a=1-\frac{9}{25}=\frac{16}{25}\)

\(A=\frac{cota+tana}{cota-tana}=\frac{sina.cosa\left(cota+tana\right)}{sina.cosa\left(cota-tana\right)}=\frac{cos^2a+sin^2a}{cos^2a-sin^2a}=\frac{1}{cos^2a-sin^2a}=\frac{1}{\frac{16}{25}-\frac{9}{25}}=\frac{25}{7}\)

\(B=\frac{sin^2a-cos^2a}{sin^2a-3cos^2a}=\frac{\frac{sin^2a}{sin^2a}-\frac{cos^2a}{sin^2a}}{\frac{sin^2a}{sin^2a}-\frac{3cos^2a}{sin^2a}}=\frac{1-cot^2a}{1-3cot^2a}=\frac{1-\left(-\frac{1}{3}\right)^2}{1-3\left(-\frac{1}{3}\right)^2}=\)

\(C_1=sin^2a+cos^2a+cos^2a=1+cos^2a=1+\frac{1}{1+tan^2a}=1+\frac{1}{1+\left(-2\right)^2}\)

\(C_2=\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)=sin^2a-cos^2a=1-2cos^2a\)

\(=1-\frac{2}{1+tan^2a}=1-\frac{2}{1+\left(-2\right)^2}\)

Ngô Chí Thành
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 6 2020 lúc 21:11

\(\frac{sinA}{cosA}+\frac{sinB}{cosB}=\frac{2cos\frac{C}{2}}{sin\frac{C}{2}}\Leftrightarrow\frac{sinA.cosB+cosA.sinB}{cosA.cosB}=\frac{2sin\frac{C}{2}.cos\frac{C}{2}}{sin^2\frac{C}{2}}\)

\(\Leftrightarrow\frac{sin\left(A+B\right)}{cosA.cosB}=\frac{2sinC}{1-cosC}\Leftrightarrow\frac{sinC}{cosA.cosB}=\frac{2sinC}{1-cosC}\)

\(\Leftrightarrow1-cosC=2cosA.cosB=cos\left(A+B\right)+cos\left(A-B\right)\)

\(\Leftrightarrow1-cosC=-cosC+cos\left(A-B\right)\)

\(\Leftrightarrow cos\left(A-B\right)=1\Rightarrow A-B=0\Rightarrow A=B\)

\(\Rightarrow\) Tam giác ABC cân tại C

\(\frac{cos^2A+cos^2B}{sin^2A+sin^2B}=\frac{1}{2}\left(cot^2A+cot^2B\right)\)

\(\Leftrightarrow2cos^2A+2cos^2B=\left(sin^2A+sin^2B\right)\left(cot^2A+cot^2B\right)\)

\(\Leftrightarrow2cos^2A+2cos^2B=cos^2A+cos^2B+sin^2A.cot^2B+sin^2B.cot^2A\)

\(\Leftrightarrow cos^2A+cos^2B=\frac{sin^2A.cos^2B}{sin^2B}+\frac{sin^2B.cos^2A}{sin^2A}\)

\(\Leftrightarrow cos^2A\left(\frac{sin^2B}{sin^2A}-1\right)=cos^2B\left(1-\frac{sin^2A}{sin^2B}\right)\)

\(\Leftrightarrow\frac{cos^2A\left(sin^2B-sin^2A\right)}{sin^2A}=\frac{cos^2B\left(sin^2B-sin^2A\right)}{sin^2B}\)

\(\Leftrightarrow cot^2A\left(sin^2B-sin^2A\right)=cot^2B\left(sin^2B-sin^2A\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sin^2B=sin^2A\\cot^2A=cot^2B\end{matrix}\right.\) \(\Rightarrow A=B\)

Anh Hùng Noob
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 8 2023 lúc 19:36

a: sin a=2/3

=>cos^2a=1-(2/3)^2=5/9

=>\(cosa=\dfrac{\sqrt{5}}{3}\)

\(tana=\dfrac{2}{3}:\dfrac{\sqrt{5}}{3}=\dfrac{2}{\sqrt{5}}\)

\(cota=1:\dfrac{2}{\sqrt{5}}=\dfrac{\sqrt{5}}{2}\)

b: cos a=1/5

=>sin^2a=1-(1/5)^2=24/25

=>\(sina=\dfrac{2\sqrt{6}}{5}\)

\(tana=\dfrac{2\sqrt{6}}{5}:\dfrac{1}{5}=2\sqrt{6}\)

\(cota=\dfrac{1}{2\sqrt{6}}=\dfrac{\sqrt{6}}{12}\)

c: cot a=1/tana=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>1/cos^2a=1+4=5

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\dfrac{2}{\sqrt{5}}\)

Toan Quyen Gaming
Xem chi tiết
Phan Nghĩa
3 tháng 10 2017 lúc 19:55

VT = sin3a.cos^3a + sin^3a.cos3a 
= sin3a.cosa.cos^2a + sin^2a.sina.cos3a 
= 1/2.(sin2a + sin4a).cos^2a + 1/2.sin^2a.(sin(-2a) + sin4a) 
= 1/2.(sin2a + sin4a).cos^2a + 1/2.sin^2a.(sin4a - sin2a) 
= 1/2.sin2a.cos^2a + 1/2.sin4a.cos^2a + 1/2.sin^2a.sin4a - 1/2.sin^2a.sin2a 
= 1/2.sin2a.(cos^2a - sin^2a) + 1/2.sin4a.(cos^2a + sin^2a) 
= 1/2.sin2a.cos2a + 1/2.sin4a 
= 1/4.sin4a + 1/2.sin4a 
= 3/4.sin4a = VP 
=> đpcm

P/s: Chỉ sợ you ko hiểu