Cho \(\Delta DEF\) vuông tại D. Phân giác DM và đường cao DK. Biết: DE = 30cm, DF = 40cm. Tính: DM.
Cho DEF cân tại D, biết DE= 18cm, EF=12cm. Đường phân giác góc E cắt DF tại M
a) Tính DM và MF
b) Đường phân giác góc F cắt DE tại N. Chứng minh MN//EF
c) Đường vuông góc với ME tại E cắt đường thẳng DF tại I. Tính FI.
Cho tam giác DEF vuông tại D biết DE=3cm,DF=4cm.Kẻ đường trung tuyến DM (M€EF).Tính độ dài EF,DM
EF=căn 3^2+4^2=5cm
DM=5/2=2,5cm
cho tam giác DEF cân tại D,đường trung tuyến DM CMtam giác DEM=tam giác DFM b)CM DM vuông góc EF c)biết DE=DF=13 È=10 tính DM d)gọi g trọng tâm của tam giác DEF tính GD
có ΔEDF cân ở D =>DE=DF; góc E =góc F
xét ΔDEM và ΔDFM có
DM là trung tuyến => EM=FM
góc E =góc F (cmt)
DE=DF (cmt)
=>ΔDEM = ΔDFM (cgc)
b)Có Δ DEF cân mà DM là trung tuyến
=> DM là đường cao (tc Δ cân )
=> DM⊥EF
c) EM=FM=EF/2=5
xét ΔDEM có DM ⊥ EF => góc EMD =90o
=>EM2+DM2=ED2 (đl pitago)
=>52+DM2=132 => DM=12
d) Ta có G là trọng tâm của ΔDEF
=>DG=2/3DM=> DG=2/3*12=8
a) Xét ΔDEM và ΔDFM có
DE=DF(ΔDEF cân tại D)
DM chung
EM=FM(M là trung điểm của EF)
Do đó: ΔDEM=ΔDFM(c-c-c)
b) Ta có: DE=DF(ΔDEF cân tại D)
nên D nằm trên đường trung trực của EF(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: ME=MF(M là trung điểm của EF)
nên M nằm trên đường trung trực của EF(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra DM là đường trung trực của EF
hay DM\(\perp\)EF(Đpcm)
cho Δ DEF vuông tại D đường cao DM cho DE =9cm , DF =15 cm . Tính EFDM
Tính EFDM là tính cái gì vậy bạn?
Cho tam giác DEF vuông tại D. Trên tia đối của DF lấy điểm M sao cho DM = DF a, cho DE= 9cm, DF = 12 cm, tính EF b, CM ∆DEM= ∆DEF c, kẻ DH vuông góc với ME, DK vuông góc với EF, cm ∆HEK cân d, CM HD // EF
a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow EF^2=9^2+12^2=225\)
hay EF=15(cm)
Vậy: EF=15cm
a) Xét tam giác EDF có: EF2 = DE2 + DF2 (đ/lí py-ta-go)
=> EF2 = 92 + 122
=> EF2 = 81 + 144 = 225
=> EF = 112,5 cm
b) Xét tam giác DEM và tam giác DEF có :
EDM = EDF = 1v
ED chung
DM = DF (gt)
=> tam giác DEM = tam giác DEF (c.g.c) hay (c/huyền+c/góc vuông)
Cho tam giác DEF vuông tại D, đường cao DK . Cho DK = 6cm, EK= 8cm. Tính DE, DF, EF,FK
trong \(\Delta DEF\) vuông tại D có
\(DK^2=EK.KF\)(đlý)\(\Rightarrow KF=\dfrac{DK^2}{EK}=\dfrac{6^2}{8}\)=4,5
ta có:EF=EK+KF=8+4,5=12,5
\(DE^2=EF.EK\left(đlý\right)\)=12,5.8=100\(\Rightarrow DE=10\)
\(DF^2=EF.KF\)(đlý)=12,5.4,5=56,25\(\Rightarrow\)DF=7,5
Cho \(\Delta\)DEF vuông tại D có DE=6cm ; DF=8cm , đường cao DH.Đường phân giác EM cắt DH tại I ( M\(\in\)DF )
a) CMR : DE2=EH.EF
b) tính độ dài các đoạn thẳng : EF , EH , DM và MF
c) CM: DE.EI=EM.EH
d) Gọi K là trung điểm của IM . Tính S\(\Delta\)DKM
Cho tam giác DEF vuông tại D, đường cao DK. Biết DE = 16cm, EF = 20cm
a) Chứng minh tam giác DKF đồng dạng với tam giác EDF
b) Tính độ dài các đoạn thẳng DF; DK
c) Kẻ đường phân giác FI (I thuộc DE) cắt DK tại M. \(\dfrac{MK}{MD}\) = \(\dfrac{DI}{EI}\)
a: Xét ΔDKF vuông tại K và ΔEDF vuông tại D có
góc F chung
=>ΔDKF đồng dạng với ΔEDF
b: \(DF=\sqrt{20^2-16^2}=12\left(cm\right)\)
DK=12*16/20=9,6cm
c: MK/MD=FK/FD
DI/EI=FD/FE
mà FK/FD=FD/FE
nên MK/MD=DI/EI
Cho tam giác DEF vuông tại D có DE= 6cm, DF= 8 cm, đường cao DH. Đường phân giác EK cắt DH tại I ( K thuộc DF) a) Tính độ dài EF, DK, KF. b) Chứng minh tam giác DEF đồng dạng tam giác HEI => DE. EI= EK. EH c) Gọi G là trung điểm của IK. Chứng minh DG vuông góc với IK
a: \(EF=\sqrt{6^2+8^2}=10\left(cm\right)\)
Xet ΔEDF có EK là phân giác
nên DK/DE=FK/FE
=>DK/3=FK/5=(DK+FK)/(3+5)=8/8=1
=>DK=3cm; FK=5cm
b: Xet ΔDEK vuông tại D và ΔHEI vuông tại H có
góc DEK=góc HEI
=>ΔDEK đồng dạng với ΔHEI
=>ED/EH=EK/EI
=>ED*EI=EK*EH
c: góc DKI=90 độ-góc KED
góc DIK=góc HIE=90 độ-góc KEF
mà góc KED=góc KEF
nên góc DKI=góc DIK
=>ΔDKI cân tại D
mà DG là trung tuyến
nên DG vuông góc IK