Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Nguyễn Khánh Uyên
Xem chi tiết
ngonhuminh
10 tháng 3 2018 lúc 19:15

a^4 +b^4 >= ab^3 +a^3 b (1)
<=> 4a^4 +4b^4 - 4ab(a^2 +b^2) >= 0
<=> [(a^2 +b^2 )^2 - 4ab(a^2 +a^2) +4a^2 b^2 ] +3a^4 +3b^4 -6a^2 b^2 >=0
<=> (a -b )^4 +3(a^4 + b^4 -2a^2 b^2 ) >= 0 (2)
cos (a-b )^4 >= 0
a^4 + b^4 >= 2a^2 b^2 (co si có thể không cần co si cũng được )
=> (2) đúng => (1) đúng => dpcm
b) a^2 +b^2 +1 >= ab +a+b (1)
<=>2a^2 +2b^2 +2 -2ab -2a-2b >=0
<=>[a^2 +b^2 -2ab ] +[a^2 -2a +1] +[b^2 -2b +1 ] >=0
<=>(a -b)^2 +(a-1)^2 + (b-1)^2 >=0 (2)
(2) đúng (1) đúng => dpcm

Đặng Nguyễn Khánh Uyên
10 tháng 3 2018 lúc 18:17

@ngonhuminh

Bùi Đạt Khôi
Xem chi tiết
Le Nhat Phuong
4 tháng 9 2017 lúc 21:43

ta áp dụng cô-si la ra 
a^2+b^2+c^2 ≥ ab+ac+bc 
̣̣(a - b)^2 ≥ 0 => a^2 + b^2 ≥ 2ab (1) 
(b - c)^2 ≥ 0 => b^2 + c^2 ≥ 2bc (2) 
(a - c)^2 ≥ 0 => a^2 + c^2 ≥ 2ac (3) 
cộng (1) (2) (3) theo vế: 
2(a^2 + b^2 + c^2) ≥ 2(ab+ac+bc) 
=> a^2 + b^2 + c^2 ≥ ab+ac+bc 
dấu = khi : a = b = c

Bùi Đạt Khôi
4 tháng 9 2017 lúc 21:53

Bạn cm hộ mình cô si la dc k mình chưa học đến

Lưu Minh Hằng
Xem chi tiết
Trung Hiếu
Xem chi tiết
Kim Chi Đặng
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 2 2020 lúc 22:31

1. Không dịch được đề

2. \(\left(m+2\right)x^2-6x+1\le0\) \(\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+2< 0\\\Delta'=9-\left(m+2\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m\ge7\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

3. \(P=\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}=\frac{a^2+b^2}{4ab}+\frac{ab}{a^2+b^2}+\frac{3\left(a^2+b^2\right)}{4ab}\)

\(P\ge2\sqrt{\frac{ab\left(a^2+b^2\right)}{4ab\left(a^2+b^2\right)}}+\frac{6ab}{4ab}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(a=b\)

Khách vãng lai đã xóa
Yên Lê Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 5 2022 lúc 0:49

a:Sửa đề:  \(a^2-4ab+4b^2\)

\(=a^2-2\cdot a\cdot2b+4b^2\)

\(=\left(a-2b\right)^2\ge0\)(luôn đúng)

b: \(-2a^2+a-1\)

\(=-2\left(a^2-\dfrac{1}{2}a+\dfrac{1}{2}\right)\)

\(=-2\left(a^2-2\cdot a\cdot\dfrac{1}{4}+\dfrac{1}{16}+\dfrac{7}{16}\right)\)

\(=-2\left(a-\dfrac{1}{2}\right)^2-\dfrac{7}{8}\le-\dfrac{7}{8}< 0\forall x\)

Làm gì mà căng
Xem chi tiết
Nguyễn Thị Mát
24 tháng 11 2019 lúc 16:50

\(\Leftrightarrow\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}+2=\frac{1}{abc}\)

Đặt : \(\left(\frac{a}{bc};\frac{b}{ac};\frac{c}{ab}\right)=\left(x,y,z\right)\)

\(x+y+z+2=xyz\)

\(\Leftrightarrow\left(x+1\right)\left(y+1\right)+\left(y+1\right)\left(z+1\right)+\left(z+1\right)\left(x+1\right)\)

\(=\left(x+1\right)\left(y+1\right)\left(z+1\right)\)

\(\Leftrightarrow\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+1=1\)

\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=2\)

\(\Leftrightarrow\frac{a}{a+bc}+\frac{b}{b+ca}+\frac{c}{c+ab}=2\)

Khách vãng lai đã xóa
Hiền Nguyễn Thị
Xem chi tiết
HoangAnh Nguyen
Xem chi tiết