Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Nguyễn Khánh Uyên

1. Với mọi a, b thuộc R. CMR:

a) \(a^4+b^4\) lớn hơn bằng \(ab^3+a^3b\)

b) \(a^2+b^2+1>_-ab+a+b\)

2. Cho a>0, b>0,c>0 .CMR:

\(ab\left(a+b\right)+bc\left(b+c\right)+ac\left(a+c\right)>_-6abc\)

ngonhuminh
10 tháng 3 2018 lúc 19:15

a^4 +b^4 >= ab^3 +a^3 b (1)
<=> 4a^4 +4b^4 - 4ab(a^2 +b^2) >= 0
<=> [(a^2 +b^2 )^2 - 4ab(a^2 +a^2) +4a^2 b^2 ] +3a^4 +3b^4 -6a^2 b^2 >=0
<=> (a -b )^4 +3(a^4 + b^4 -2a^2 b^2 ) >= 0 (2)
cos (a-b )^4 >= 0
a^4 + b^4 >= 2a^2 b^2 (co si có thể không cần co si cũng được )
=> (2) đúng => (1) đúng => dpcm
b) a^2 +b^2 +1 >= ab +a+b (1)
<=>2a^2 +2b^2 +2 -2ab -2a-2b >=0
<=>[a^2 +b^2 -2ab ] +[a^2 -2a +1] +[b^2 -2b +1 ] >=0
<=>(a -b)^2 +(a-1)^2 + (b-1)^2 >=0 (2)
(2) đúng (1) đúng => dpcm

Đặng Nguyễn Khánh Uyên
10 tháng 3 2018 lúc 18:17

@ngonhuminh


Các câu hỏi tương tự
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
bach nhac lam
Xem chi tiết
Agami Raito
Xem chi tiết
bach nhac lam
Xem chi tiết
Đặng Thanh Mai
Xem chi tiết
王俊凯
Xem chi tiết
Linh Le Thuy
Xem chi tiết
Học tốt
Xem chi tiết