Cho A = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +.....+ 2 mũ 60 . Chứng minh rằng A chia hết cho 3
Chứng minh rằng: 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +......+ 2 mũ 59 + 2 mũ 60 chia hết cho 3.
\(2+2^2+2^3+2^4+...+2^{59}+2^{60}\\ =\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ =2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\\ =\left(1+2\right)\left(2+2^3+...+2^{59}\right)\\ =3\left(2+2^3+...+2^{59}\right)⋮3\)
Chứng minh rằng: A = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + ..... + 2 mũ 60 chia hết cho 5 và 7
\(A=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+...+2^{57}\right)⋮5\)
\(A=2+2^2+2^3+2^4+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\).
hoàn đức hà là giáo viên trên olm phải ko?
giải A= 2+2 mũ 2 +2 mũ 3+.........+2 mũ 60 chứng minh rằng chia hết cho 3
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\\ A=\left(2+1\right)\left(1+2^3+...+2^{59}\right)\\ A=3\left(1+2^3+...+2^{59}\right)⋮3\)
CHỨNG MINH RẰNG
A = 2 + 2 mũ 2 + 2 mũ 3 + ......+ 2 mũ 60 chia hết cho 3,7,15
B= 3 +3 mũ 3 + 3 mũ 5 +.........+3 mũ 1991 chia hết cho 13 , 41
D= 11 mũ 9 + 11 mũ 8 + 11 mũ 7 +.........+11 +1 chia hết cho 5
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3
\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7
\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.
\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)
mà 91 chia hết cho 13 nên B chia hết cho 13.
\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.
D : để ý rằng \(11^k\) đều có đuôi là 1
nên D có đuôi là đuôi của \(1+1+..+1=10\)
Vậy D chia hết cho 5
Câu1 :Cho ba STN a, b, c không chia hết cho 4. Khi chia 4 được số dư khác nhau. Chứng minh a+b+c không chia hết cho 4.
Câu 2: Chứng tỏ rằng :
a) Số có dạng aaa aaa chia hết cho 7 và 37.
b) a+3.b chia hết cho 2 với a+b chia hết cho 2 ( a,b thuộc N )
Câu 3 :Chứng tỏ rằng :
a) 81 mũ 7 - 27 mũ 9 - 9 mũ 13 chia hết cho 45.
b) 16 mũ 5 + 2 mũ 15 chia hết cho 33
c) 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 + .....+ 2 mũ 60 chia hết cho 15 và 21.
giải bài toán sau a) cho M = 2 mũ 1+ 2 mũ 2+ 2 mũ 3+ 2 mũ 4+....................+2 mũ 20.chứng tỏ rằng M chia hết cho5
b) tìm số dư khi chia B cho 13,với B = 3 mũ 0+3 mũ 1+ 3 mũ 2+3 mũ 3+................+3 mũ 60
c) cho abc-deg chia hết cho 7.chứng tỏ rằng abcdeg chia hết cho 7
chứng minh rằng :
a) 942 mũ 60 - 351 mũ 37 chia hết cho 5
b) 99 mũ 5 - 98 mũ 4 + 97 mũ 3 - 96 mũ 2 chia hết cho 2 và 5
a = 2 + 2 mũ 2 + chấm chấm chấm + 2 mũ 39 chia hết cho 35
chứng minh rằng :
a) 942 mũ 60 - 351 mũ 37 chia hết cho 5
b) 99 mũ 5 - 98 mũ 4 + 97 mũ 3 - 96 mũ 2 chia hết cho 2 và 5
a, 942^60-351^37
=(942^4)^15-351^37
=(....6)^15 -351^37
suy ra( 942^4)^15 có tận cùng là 6
357^37 có tận cùng là 1
hiệu của 942^60-351^37 có tận cùng là 5
suy ra 942^60-351^37 chia hết cho 5
a) Ta có: 942^60=(942^4)^15=...6^15=...6
351^37=...1
Suy ra: 942^60-351^37=...5 chia hết cho 5. Vậy 942^60-351^37 chia hết cho 5
b) Làm tương tự câu trên
a) Ta có : 94260-35137=(9424)15-35137=(...6)15-35137=(...6)-(...1)=(...5)
vì (...5) có tận cùng là 5
=> (...5) chia hết cho 5
b) Ta có : 995=(994)(991)=(...1).(...9)=(....9)
984=(...6)
973=972.97=(...9)(..7)=(..3)
962=(....6)
=> (...9)-(...6)+(...3)-(...6)=(...0)
Vây (....0) chia hết cho cả 2 và 5
Cho A = 2 + 2 mũ 2 + 2 mũ 3 + .... + 2 mũ 60 a ) Thu gọn tổng A b) Chứng minh rằng : A chia hết cho 3,5, 7
a) \(A=2+2^2+2^3+\dots+2^{60}\)
\(2A=2^2+2^3+2^4+\dots+2^{61}\)
\(2A-A=\left(2^2+2^3+2^4+\dots+2^{61}\right)-\left(2+2^2+2^3+\dots+2^{60}\right)\)
\(A=2^{61}-2\)
Vậy: \(A=2^{61}-2\).
b)
+) \(A=2+2^2+2^3+\dots+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+\left(2^5+2^6\right)+\dots+\left(2^{59}+2^{60}\right)\)
\(=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+2^5\cdot\left(1+2\right)+\dots+2^{59}\cdot\left(1+2\right)\)
\(=2\cdot3+2^3\cdot3+2^5\cdot3+\dots+2^{59}\cdot3\)
\(=3\cdot\left(2+2^3+2^5+\dots+2^{59}\right)\)
Vì \(3\cdot\left(2+2^3+2^5+\dots+2^{59}\right)⋮3\) nên \(A⋮3\)
+) \(A=2+2^2+2^3+\dots+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+\left(2^9+2^{10}+2^{11}+2^{12}\right)+\dots+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\cdot\left(1+2+2^2+2^3\right)+2^5\cdot\left(1+2+2^2+2^3\right)+2^9\cdot\left(1+2+2^2+2^3\right)+\dots+2^{57}\cdot\left(1+2+2^2+2^3\right)\)
\(=2\cdot15+2^5\cdot15+2^9\cdot15+\dots+2^{57}\cdot15\)
\(=15\cdot\left(2+2^5+2^9+\dots+2^{57}\right)\)
Vì \(15⋮5\) nên \(15\cdot\left(2+2^5+2^9+\dots+2^{57}\right)⋮5\)
hay \(A\vdots5\)
+) \(A=2+2^2+2^3+\dots+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+\left(2^7+2^8+2^9\right)+\dots+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\cdot\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+2^7\cdot\left(1+2+2^2\right)+\dots+2^{58}\cdot\left(1+2+2^2\right)\)
\(=2\cdot7+2^4\cdot7+2^7\cdot7+\dots+2^{58}\cdot7\)
\(=7\cdot\left(2+2^4+2^7+\dots+2^{58}\right)\)
Vì \(7\cdot\left(2+2^4+2^7+\dots+2^{58}\right)⋮7\) nên \(A⋮7\)
$Toru$
a)
Vậy: .
b)
+)
Vì nên
+)
Vì nên
hay
+)
Vì nên