Rút gọn rồi tính giá trọ của biểu thức
( x + 2y )3 - 6xy ( x + 2y) - 8y3
tại x= -3, y= 2017
a) rút gọn biểu thức\(\dfrac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\) rồi tính giá trị của biểu thức tại x=5 và y=3
B) phân tích đa thức 2x-2y-x^2+2xy-y^2
B) Ta có: 2x-2y-x2+2xy-y2
⇔ 2(x-y)-(x2-2xy+y2)
⇔ 2(x-y)-(x-y)2
⇔ (x-y)(2-x+y)
Đúng thì tick nhé
rút gọn biểu thức rồi tính giá trị
3(x-1)(x^2+x+1) +(x-1)^3-4x(x+1)(x-1) tại x =-2
(3xy-2)(9x^2y^2+6xy+4)-3xy(3xy+1)^2 tại x =-2010,y =-1/2010
Rút gọn rồi tính giá trị của biểu thức:(x-y)(x^2+xy+y^2)-2y^3 tại x=1/2 và y=2/3
Rút gọn và tính giá trị biểu thức
(x+2y)^2-(2x-y)(x+2y) tại x =3
( x + 2y )2 - ( 2x - y ) ( x + 2y )
= ( x + 2y ) ( x + 2y - 2x + y )
= ( x + 2y ) ( 3y - x )
Tại x = 3
=> ( 3 + 2y ) ( 3y - 3 )
Theo mik là vậy nha :D
Rút gọn rồi tính giá trị của biểu thức A = \(\dfrac{x+y}{2x+2y}\) tại x + y = 0
\(\dfrac{x+y}{2\left(x+y\right)}=\dfrac{0}{2.0}=\dfrac{0}{0}???\)
\(A=\dfrac{x+y}{2\left(x+y\right)}\left(đk:x+y\ne0\right)\)
Vậy với \(x+y=0\) thì \(A\in\varnothing\)
Rút gọn rồi tính giá trị của biểu thức:
x^2+2xy+y^2-2x-2y tại x+y=-6
\(x^2+2xy+y^2-2x-2y=\left(x+y\right)^2-2\left(x+y\right)=\left(-6\right)^2-2.\left(-6\right)=\)
B1 rút gọn rồi tính giá trị cảu biểu thức
a) A = ( 2x - 1 ) \(^2\)+ (3 - 2x ) ( 2x + 3 ) tại x = \(\dfrac{1}{4}\)
b) x(x\(^2\)+ y ) - ( x + 2y ) ( x\(^2\)- 2xy + 4y\(^2\)) tại x= 32 , y= -2
a) \(A=4x^2-4x+1+9-4x^2=-4x+10\)
\(=-4.\dfrac{1}{4}+10=9\)
b) \(B=x^3+xy-x^3-8y^3=y\left(x-8y^2\right)\)
\(=\left(-2\right).\left(32-32\right)=0\)
a: Ta có: \(A=\left(2x-1\right)^2+\left(3-2x\right)\left(3+2x\right)\)
\(=4x^2-4x+1+9-4x^2\)
\(=-4x+10\)
\(=-4\cdot\dfrac{1}{4}+10=-1+10=9\)
rút gọn rồi tính giá trị biểu thức
P=(x-y)(x2+xy+y2)-2y3 tại x =1/2 và y=2/3
Dễ mà bạn
\(P=\left(x-y\right)\left(x^2+xy+y^2\right)-2y^3=x^3-y^3-2y^3=x^3-3y^3=\left(\frac{1}{2}\right)^3-3.\left(\frac{2}{3}\right)^3=\frac{-55}{72}\)
Rút gọn rồi tính giá trị biểu thức B = (x + 2y)(x^2 − 2xy + 4y^2) tại x = −8; y = −2
\(B=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\\ =\left(x+2y\right)\left(x^2-x.2y+\left(2y\right)^2\right)\\ =x^3+\left(2y\right)^3\\ =\left(-8\right)^3+\left(2.-2\right)^3\\ =\left(-8\right)^3+\left(-4\right)^3\\ =-512+\left(-64\right)\\ =-512-64=-576\)
\(B=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
\(=x\left(x^2-2xy+4y^2\right)+2y\left(x^2-2xy+4y^2\right)\)
\(=x^3-2x^2y+4xy^2+2x^2y-4xy^2+8y^3\)
\(=x^3+8y^3+\left(-2x^2y+2x^2y\right)+\left(4xy^2-4xy^2\right)\)
\(=x^3+8y^3\)
Thay \(x=-8;y=-2\) vào \(B\), ta được:
\(B=\left(-8\right)^3+8\cdot\left(-2\right)^3\)
\(=-512-64\)
\(=-576\)
Vậy \(B=-576\) tại \(x=-8;y=-2.\)
#\(Toru\)