Tìm x,y, z biết:
x/2 = y/3 và xy=54
Tìm x,y thuộc Z biết:x^2+xy=2019 và y^2-3xy=99
Từ pt thứ 2, ta thấy \(y^2⋮9\Leftrightarrow y⋮3\) \(\Leftrightarrow y=3z\left(z\inℤ\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xz=2019\\9z^2-9xz=99\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xz=2019\\z^2-xz=11\end{matrix}\right.\) (*)
Từ pt đầu tiên của (*), ta thấy \(x⋮3\Leftrightarrow x=3t\left(t\inℤ\right)\)
Khi đó \(9t^2+9tz=2019\) \(\Rightarrow2019⋮9\), vô lí.
Do đó, pt đã cho không có nghiệm nguyên.
Tìm x;y;z biết:
x/2=y/3=z/5 và x + y - z = 10
2 + 3 - 5 = 0 (ở dưới mẫu) thì vô lí nên đề sai
Sửa đề: x+y+z=10
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y+z=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{10}{10}=1\)
Do đó: x=2; y=3; z=5
Tìm x,y,z biết:x/3=y/2=z/-2 và x^2 +3y^2-z^2=17
Đặt: \(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{z}{-2}=k\)
\(\Rightarrow x=3k;y=2k;z=-2k\)
Ta có: \(x^2+3y^2-z^2=17\)
\(\Rightarrow\left(3k\right)^2+3\cdot\left(2k\right)^2-\left(-2k\right)^2=17\)
\(\Rightarrow9k^2+3\cdot4k^2-4k^2=17\)
\(\Rightarrow17k^2=17\)
\(\Rightarrow k^2=1\)
\(\Rightarrow k=\pm1\)
Khi k = 1 thì:
\(\left\{{}\begin{matrix}x=3\\y=2\\z=-2\end{matrix}\right.\)
Khi k = -1 thì:
\(\left\{{}\begin{matrix}x=-3\\y=-2\\z=2\end{matrix}\right.\)
Help me....
1 Tìm a và b biết : a^2+b^2+2=2a+2b
2 Phân tích đa thức thành nhân tử: a^3+b^3+c^3-3abc
3 Tìm x,y,z biết:x^2+y^2+z^2=xy+yz+xz
Tìm x,y,z biết:x/y=2/3; y/z=3/4 và x+y+z=27
Tìm x, y, z biết:
x : y : z = 3 : (-2) : (-5) và 2z - 3y = 44
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{3}=\dfrac{y}{-2}=\dfrac{z}{-5}=\dfrac{2z-3y}{2.-2-3.-5}=\dfrac{44}{11}=4\)
\(\dfrac{x}{3}=4\Rightarrow x=12\\ \dfrac{y}{-2}=4\Rightarrow y=-8\\ \dfrac{z}{-5}=4\Rightarrow z=-20\)
tìm x,y,z,biết:x/5=y/7=z/3 và x2+y2-z2=585
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\) va \(x^2+y^2-z^2=585\)
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Suy ra : \(\frac{x^2}{25}=9\Rightarrow x^2=9.25=225\Rightarrow x=15\) hoac \(x=-15\)
\(\frac{y^2}{49}=9\Rightarrow y^2=9.49=441\Rightarrow y=21\)hoac \(y=-21\)
\(\frac{z^2}{9}=9\Rightarrow z^2=9.9=81\Rightarrow z=9\) hoac \(z=-9\)
tìm x,y,z biết xy=2 yz=3 và xz=54
\(\hept{\begin{cases}xy=2\\yz=3\\zx=54\end{cases}}\Rightarrow xy.yz.zx=2.3.54\)
\(\Rightarrow\left(xyz\right)^2=18^2\)\(\Rightarrow xyz=\pm18\)
Thế vào mà tìm x,y,z
tìm x,y,z biết:x+y-3/z=y+z+2.x=x+z+1/y=1/x+y+z
Khi em các em viết đề bài trên hỏi đáp của Olm thì viết bằng công thức toán học góc trái màn hình, có biểu tượng \(\Sigma\). Như vậy sẽ giúp cộng đồng Olm hiểu đúng đề bài và trợ giúp các em được tốt nhất.
Cảm ơn các em đã đồng hành cùng Olm.