Cho a>1 cmr \(a>\sqrt{a}\)
1. Cho a,b không âm
CMR : \(\frac{a+b}{2}\ge\sqrt{ab}\)
2. Cho a,b không âm
CMR : \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)
3. Cho biểu thức :
\(M=\frac{1}{\sqrt{1\cdot2005}}+\frac{1}{\sqrt{2\cdot2004}}+...+\frac{1}{\sqrt{2005\cdot1}}\)
CMR : \(M\ge\frac{2005}{1003}\)
1. Ta có:
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( Nếu a, b ≥ 0)
=> \(a-2\sqrt{ab}+b\ge0\)
=> \(\left(a-2\sqrt{ab}+b\right)+2\sqrt{ab}\ge0+2\sqrt{ab}\)
=> \(a+b\ge2\sqrt{ab}\) => \(\frac{\left(a+b\right)}{2}\ge\frac{2\sqrt{ab}}{2}\)
=> \(\frac{\left(a+b\right)}{2}\ge\sqrt{ab}\);
(Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\) => a = b)
1. BĐT \(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
2. BĐT \(\Leftrightarrow\frac{a+b}{2}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)
\(\Leftrightarrow2\left(a+b\right)\ge a+2\sqrt{ab}+b\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
3. Ta có: \(M=\frac{2}{\sqrt{1\cdot2005}}+\frac{2}{\sqrt{2\cdot2004}}+...+\frac{2}{\sqrt{1003\cdot1003}}\)
Áp dụng BĐT Cô-si:
\(\sqrt{1\cdot2005}\le\frac{1+2005}{2}=1003\)
Do dấu "=" không xảy ra nên \(\sqrt{1\cdot2005}< 1003\)
Khi đó: \(\frac{2}{\sqrt{1\cdot2005}}>\frac{2}{1003}\)
Chứng minh tương tự với các phân thức còn lại rồi cộng vế ta được :
\(M>\frac{2006}{1003}>\frac{2005}{1003}\) ( đpcm )
Em có cách khác ở bài 2 nè:) Nhưng thôi làm 2 bài luôn bài 3 ý tưởng y hệt hà..
Bài 1: BĐT \(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\left(true\right)\)
Đẳng thức xảy ra khi a = b
Bài 2: BĐT trên là thuần nhất (hay đồng bậc gì ấy) nên ta chuẩn hóa a + b =2.
Cần chứng minh: \(1\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)
Thật vậy theo Cô si: \(RHS\left(VP\right)=\frac{\sqrt{1.a}+\sqrt{1.b}}{2}\le\frac{\frac{a+1}{2}+\frac{b+1}{2}}{2}=\frac{a+b+2}{4}=1=LHS\left(VT\right)\)
Ta có đpcm. True?
Bất đẳng thức Bunhiacopxki
B1: Cho a,b,c thỏa mãn: a+b+c=1. CMR: \(a^2+b^2+c^2\ge\dfrac{1}{3}\)
B2: Cho a,b,c dương thỏa mãn: \(a^2+4b^2+9c^2=2015\). CMR: \(a+b+c\le\dfrac{\sqrt{14}}{6}\)
B3: Cho a,b dương thỏa mãn: \(a^2+b^2=1\).CMR: \(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{2+\sqrt{2}}\)
Bài 1:
Áp dụng BĐT Bunhiacopxky ta có:
$(a^2+b^2+c^2)(1+1+1)\geq (a+b+c)^2$
$\Leftrightarrow 3(a^2+b^2+c^2)\geq 1$
$\Leftrightarrow a^2+b^2+c^2\geq \frac{1}{3}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c=\frac{1}{3}$
Bài 2:
Áp dụng BĐT Bunhiacopxky:
$(a^2+4b^2+9c^2)(1+\frac{1}{4}+\frac{1}{9})\geq (a+b+c)^2$
$\Leftrightarrow 2015.\frac{49}{36}\geq (a+b+c)^2$
$\Leftrightarrow \frac{98735}{36}\geq (a+b+c)^2$
$\Rightarrow a+b+c\leq \frac{7\sqrt{2015}}{6}$ chứ không phải $\frac{\sqrt{14}}{6}$ :''>>
Bài 3:
Áp dụng BĐT Bunhiacopxky:
$2=(a^2+b^2)(1+1)\geq (a+b)^2\Rightarrow a+b\leq \sqrt{2}$
$(a\sqrt{1+a}+b\sqrt{1+b})^2\leq (a^2+b^2)(1+a+1+b)$
$=2+a+b\leq 2+\sqrt{2}$
$\Rightarrow a\sqrt{1+a}+b\sqrt{1+b}\leq \sqrt{2+\sqrt{2}}$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=\frac{1}{\sqrt{2}}$
a) CMR: \(\frac{1}{\sqrt{a+3}+\sqrt{a+2}}+\frac{1}{\sqrt{a+2}+\sqrt{a+1}}+\frac{1}{\sqrt{a+1}+\sqrt{a}}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b) Cho các số thực dương x, y, z thỏa mãn x+y+z=1. CMR: \(\frac{x}{x+yz}+\frac{y}{y+xz}+\frac{z}{z+xy}\le\frac{9}{4}\)
a/ Nhân cả tử và mẫu của từng phân số với liên hợp của nó và rút gọn:
\(VT=\sqrt{a+3}-\sqrt{a+2}+\sqrt{a+2}-\sqrt{a+1}+\sqrt{a+1}-\sqrt{a}\)
\(=\sqrt{a+3}-\sqrt{a}=\frac{3}{\sqrt{a+3}+\sqrt{a}}\)
b/ \(VT=\frac{x}{x\left(x+y+z\right)+yz}+\frac{y}{y\left(x+y+z\right)+zx}+\frac{z}{z\left(x+y+z\right)+xy}\)
\(=\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(x+y\right)\left(y+z\right)}+\frac{z}{\left(x+z\right)\left(y+z\right)}\)
\(=\frac{x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=\frac{2\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\) (1)
Mặt khác ta có: \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\)
Thật vậy, \(\left(x+y+z\right)\left(xy+yz+zx\right)=\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\)
Mà \(xyz\le\frac{1}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\) (theo AM-GM)
\(\Rightarrow\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\le\left(x+y\right)\left(y+z\right)\left(z+x\right)\) (đpcm)
Thay vào (1) \(\Rightarrow VT\le\frac{2\left(xy+yz+zx\right)}{\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)}=\frac{9}{4}\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)
Cho \(a,b>0;c\ne0\)
CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\Leftrightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
Lời giải:
$\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}$
$\Leftrightarrow a+b=a+c+b+c+2\sqrt{(a+c)(b+c)}$
$\Leftrightarrow 2c+2\sqrt{(a+c)(b+c)}=0$
$\Leftrightarrow c+\sqrt{(a+c)(b+c)}=0$
\(\Leftrightarrow \left\{\begin{matrix} -c=\sqrt{(a+c)(b+c)}\\ c< 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c^2=(c+a)(c+b)\\ c< 0\end{matrix}\right.\)
\( \Leftrightarrow \left\{\begin{matrix} ab+bc+ac=0\\ c< 0\end{matrix}\right.\Leftrightarrow \frac{ba+bc+ac}{abc}=0\) (do $a,b>0$)
$\Leftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0$
(đpcm)
Cho a,b∈Z, c≠0 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
CMR: \(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)
\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{\left(a+c\right)\left(b+c\right)}\)
\(\Leftrightarrow2c+2\sqrt{\left(a+c\right)\left(b+c\right)}=0\)
\(\Leftrightarrow c+\sqrt{\left(a+c\right)\left(b+c\right)}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}c< 0\\-c=\sqrt{\left(a+c\right)\left(b+c\right)}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c< 0\\c^2=\left(a+c\right)\left(b+c\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}c< 0\\ab+bc+ac=0\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{ab+bc+ac}{abc}=0\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\left(đúng\right)\)
Từ 1a+1b+1c=0⇒ab+bc+ac=01a+1b+1c=0⇒ab+bc+ac=0
Khi đó:
(√a+c+√b+c)2=a+c+b+c+2√(a+c)(b+c)(a+c+b+c)2=a+c+b+c+2(a+c)(b+c)
=a+b+2c+2√ab+ac+bc+c2=a+b+2c+2√c2=a+b+2c+2ab+ac+bc+c2=a+b+2c+2c2
=a+b+2c+2|c|=a+b+2c+2|c|
Vì a,ba,b dương nên −1c=1a+1b>0⇒c<0⇒2|c|=−2c−1c=1a+1b>0⇒c<0⇒2|c|=−2c
Do đó:
(√a+c+√b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b(a+c+b+c)2=a+b+2c+2|c|=a+b+2c+(−2c)=a+b
⇒√a+c+√b+c=√a+b
Bài 1: Cho a,b,c là đọ dài 3 cạnh của một tam giác. CMR: \(\frac{1}{\sqrt{b+c-a}}+\frac{1}{\sqrt{a+c-b}}+\frac{1}{\sqrt{a+b-c}}\ge\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}.\)
Bài 2: Cho a,b,c >0. CMR: \(abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right).\)
Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)
⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2
⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự
⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y
⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0
(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)
dấu = ⇔x=y=z⇔a=b=c
Mai Anh ! cậu giỏi quá, cậu nè :33
Ha~ Idol về mảng copy nay giỏi quá lè:33. Tác hại của việc copy paste là đây
Lần sai copy paste nhớ nhìn lại với chỉnh sửa đi nhá. Ko để này lộ liễu bôi bác lắm
Copy always mà vẫn 50k giải tuần đấy, ghê=))
Cho a,b,c>0.CMR \(\sqrt{1+\dfrac{16a}{b+c}}+\sqrt{1+\dfrac{16b}{a+c}}+\sqrt{1+\dfrac{16c}{a+b}}\ge9\)
cho \(a\ge0\). CMR:
\(\frac{a^2-\sqrt{a}}{a^2+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a^2-\sqrt{a}-1}+a+1=\left(\sqrt{a}-1\right)^2\)
\(VT=\sqrt{a}\left(\sqrt{a}-1\right)-\sqrt{a}\left(\sqrt{a}+1\right)+a+1\)
\(=a-\sqrt{a}-a-\sqrt{a}+a+1\)
\(=a-2\sqrt{a}+1=\left(\sqrt{a}-1\right)^2=VP\)
cho \(a\ge0\). CMR:
\(\frac{a^2-\sqrt{a}}{a^2+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a^2-\sqrt{a}+1}+a+1=\left(\sqrt{a}-1\right)^2\)
Đề của bạn bị sai, mình sửa lại đề ở dưới nhé!
\(\frac{a^2-\sqrt{a}}{a+\sqrt{a}+1}-\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}+a+1\)
\(=\frac{\left(a^2-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)-\left(a^2+\sqrt{a}\right)\left(a+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{\left(a+\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}+a+1\)
\(=\frac{\left(a^2-\sqrt{a}\right)\left(a-\sqrt{a}+1\right)-\left(a^2+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)+\left(a+1\right)\left(a+\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{\left(a+1\right)^2-\left(\sqrt{a}\right)^2}\)
\(=\frac{\left(a^2-\sqrt{a}\right)\left(a-\sqrt{a}+1\right)-\left(a^2+\sqrt{a}\right)\left(a+\sqrt{a}+1\right)\left(a+1\right)\left[\left(a+1\right)^2-a\right]}{\left(a-1\right)^2-a}\)
\(=\frac{a^3-a^2\sqrt{x}+a^2-a\sqrt{a}+a-\sqrt{a}-a^3-a^2\sqrt{a}-a^2-a\sqrt{a}-a-\sqrt{a}+\left(a+1\right)\left[\left(a+1\right)^2-a\right]}{a^2+2a+1-a}\)
\(=\frac{-2a^2\sqrt{a}-2a\sqrt{a}-2\sqrt{a}+\left(a+1\right)\left(a^2+2a+1-a\right)}{a^2+a+1}\)
\(=\frac{-2\sqrt{a}\left(a^2+a+1\right)+\left(a+1\right)\left(a^2+a+1\right)}{a^2+a+1}\)
\(=\frac{\left(a^2+a+1\right)\left[-2\sqrt{x}+\left(x+1\right)\right]}{a^2+a+1}\)
\(=x-1-2\sqrt{x}\)
\(=\left(\sqrt{x}-1\right)^2\)
(Chúc you học giỏi nhoa!)
Ui ui mình ghi lộn, xin lỗi nhoa, vì x dễ làm hơn nên mình ghi lộn a thành x, mong bạn thông cảm hihi!
Cho a,b,c >0 CMR \(\sqrt{1+a^2}+\sqrt{1+b^2}+\sqrt{1+c^2}>=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)