Tham khảo ạ ^^
\(a>1\Leftrightarrow\sqrt{a}>1\)
\(\Leftrightarrow a-\sqrt{a}>0\) (Trừ theo vế)
\(\Leftrightarrow a>\sqrt{a}\left(đpcm\right)\)
Bạn tự kết luận ^^
Tham khảo ạ ^^
\(a>1\Leftrightarrow\sqrt{a}>1\)
\(\Leftrightarrow a-\sqrt{a}>0\) (Trừ theo vế)
\(\Leftrightarrow a>\sqrt{a}\left(đpcm\right)\)
Bạn tự kết luận ^^
1. Cho a,b không âm
CMR : \(\frac{a+b}{2}\ge\sqrt{ab}\)
2. Cho a,b không âm
CMR : \(\sqrt{\frac{a+b}{2}}\ge\frac{\sqrt{a}+\sqrt{b}}{2}\)
3. Cho biểu thức :
\(M=\frac{1}{\sqrt{1\cdot2005}}+\frac{1}{\sqrt{2\cdot2004}}+...+\frac{1}{\sqrt{2005\cdot1}}\)
CMR : \(M\ge\frac{2005}{1003}\)
cho a,b dương và c ≠ 0 thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\). CMR: \(\sqrt{a+b}=\sqrt{b+c}+\sqrt{c+a}\)
Cho \(\frac{1}{a}+\frac{1}{b}=1\) CMR: \(\sqrt{a-1}+\sqrt{b-1}=\sqrt{a+b}\)
Cho a, b, c > 0 thỏa mãn a + b = 2c. CMR \(\frac{1}{\sqrt{a}+\sqrt{c}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{b}}\)
CMR : \(2\left(\sqrt{n+1}-\sqrt{n}\right)< \dfrac{1}{\sqrt{n}}< 2\left(\sqrt{n}-\sqrt{n-1}\right)\) với n thuộc N*
Áp dụng cho : \(A=1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{100}}\) . CMR : 18 < A < 19
@Akai Haruma
Cho a, b >1
CMR :
\(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
(4)Bài 1:Với \(\forall\) a>b>0. CMR: a+ \(\frac{1}{b\left(a-b\right)}\ge3\)
(7) Bài 2: Cho a,b,c \(\ne\) 0 .CMR: \(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\)
(8) Bài 3: Cho a,b,c>0 thõa mãn abc=1
CMR: \(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
1 ) Cho a,b,c >0 và abc= 1.CMR:
\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
2 ) Cho x,y,z > 0 và x+y+z=3
CMR : \(\frac{x}{x+\sqrt{3x+yz}}+\frac{y}{y+\sqrt{3y+zx}}+\frac{z}{z+\sqrt{3z+xy}}\le1\)
Cho các số thực dương a, b, c thoả mãn:
\(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}=\dfrac{3}{2}\)
Cmr: \(a^2+b^2+c^2=\dfrac{3}{2}\)
Cho a,b,c > 1 và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\).CMR:
\(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\le\sqrt{a+b+c}\)