Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
MARIA OZAWA
Xem chi tiết
Phuong Tran
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 9 2019 lúc 22:34

Giả sử \(\frac{IA}{AB}=k\Rightarrow\frac{IB}{AB}=1-k\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=-k\overrightarrow{AB}\\\overrightarrow{IB}=\left(1-k\right)\overrightarrow{AB}\end{matrix}\right.\)

\(\Rightarrow IB.\overrightarrow{IA}+IA.\overrightarrow{IB}=\left(1-k\right).AB.\left(-k\right)\overrightarrow{AB}+k.AB.\left(1-k\right)\overrightarrow{AB}\)

\(=\left(k^2-k\right)AB.\overrightarrow{AB}+\left(k-k^2\right)AB.\overrightarrow{AB}\)

\(=\left(k^2-k+k-k^2\right).AB.\overrightarrow{AB}=\overrightarrow{0}\)

Pi Chan
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Alone
30 tháng 3 2017 lúc 20:16

Câu C: \(\overrightarrow{IA}=-\overrightarrow{IB}\)

Nguyễn Minh Huy
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lê Thiên Anh
31 tháng 3 2017 lúc 11:05

Giải bài 7 trang 92 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 92 sgk Hình học 11 | Để học tốt Toán 11

Quỳnh Như Trần Thị
Xem chi tiết
bepro_vn
5 tháng 9 2021 lúc 19:36

→IB+→IA−→IC−→CM=→0

=>\(\overrightarrow{IB}+\overrightarrow{IA}-\overrightarrow{IM}=\overrightarrow{0}\)

=>\(\overrightarrow{IB}+\overrightarrow{IA}=\overrightarrow{IM}\)

Đặt K là trung điểm AB

=>\(\overrightarrow{IB}+\overrightarrow{IA}=\overrightarrow{2IK}\)(T/c trung tuyến)

=>\(\overrightarrow{2IK}=\overrightarrow{IM}\)

=>K,M,I thẳng hàng

Vậy điểm M thuộc đoạn KI sao cho \(\dfrac{\overrightarrow{IK}}{\overrightarrow{IM}}=\dfrac{1}{2}\)

NGUYỄN MINH HUY
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Akai Haruma
12 tháng 11 2018 lúc 18:13

Lời giải:

Áp dụng các công thức sau: \(|\overrightarrow {a}|^2=\overrightarrow{a}.\overrightarrow{a}\)

\(\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{0}\) nếu \(\overrightarrow{a}\perp \overrightarrow{b}\)

Ta có:

\(BC^2.\overrightarrow{IA}+AC^2.\overrightarrow{IB}+AB^2.\overrightarrow{IC}\)

\(=BC^2.\overrightarrow{IA}+AC^2.(\overrightarrow{IA}+\overrightarrow{AB})+AB^2.(\overrightarrow{IA}+\overrightarrow{AC})\)

\(=BC^2.\overrightarrow{IA}+\overrightarrow{IA}(AC^2+AB^2)+AC^2.\overrightarrow{AB}+AB^2.\overrightarrow{AC}\)

\(=2BC^2.\overrightarrow{IA}+AC^2.\overrightarrow{AB}+AB^2.\overrightarrow{AC}\)

\(=\overrightarrow{BC}.\overrightarrow{BC}.\overrightarrow{HA}+\overrightarrow{AC}.\overrightarrow{AC}.\overrightarrow{AB}+\overrightarrow{AB}.\overrightarrow{AB}.\overrightarrow{AC}\)

\(=\overrightarrow {BC}.\overrightarrow{0}+\overrightarrow{AC}.\overrightarrow{0}+\overrightarrow{AB}.\overrightarrow{0}=\overrightarrow {0}\)