Cho \(\sqrt{x}+2\sqrt{y}=10\) .CMR \(x+y\ge20\)
cho \(\sqrt{x}+2\sqrt{y}=10.CMR:x+y\ge20\)
Áp dụng BĐT Bu nhi a cốp x ki
\(\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]=5\left(x+y\right)\)
=> \(\left(\sqrt{x}+2\sqrt{y}\right)^2\le5\left(x+y\right)\)
=> \(10^2\le5\left(x+y\right)\)
Tiếp nha
Cho \(\sqrt{x}+2\sqrt{y}=10\) . Chứng minh \(x+y\ge20\)
Áp dụng bđt Bunhiacopxki , ta có : \(10^2=\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)\)
\(\Rightarrow5\left(x+y\right)\ge100\Rightarrow x+y\ge20\) (đpcm)
cho \(\sqrt{x}+2\sqrt{y}=10\)chứng minh rằng \(x+y\ge20\)
Áp dụng BĐT Cauchy–Schwarz ta có:
\(\left(1^2+2^2\right)\left(x+y\right)\ge\left(\sqrt{x}+2\sqrt{y}\right)^2\)
<=> \(5\left(x+y\right)\ge100\)
<=> \(x+y\ge20\)
Dấu "=" xảy ra <=> \(x=4;\)\(y=16\)
ban duong quynh giang oi bdt ay phai la bunhiacopxki moi dung
Cho \(\sqrt{x}+2\sqrt{y}=10.\) . Chứng minh \(x+y\)\(\ge20\)
Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(10^2=\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left(x+y\right)\)
\(\Rightarrow x+y\ge\frac{10^2}{1^2+2^2}=20\)\(\Rightarrow x+y\ge20\)
cách khác:
Áp dụng bất đẳng thức Cô Si : ta có
\(x+4\ge2\sqrt{x.4}=4\sqrt{x}\left(1\right).\)
\(y+16\ge2\sqrt{y.16}=8\sqrt{y}\left(2\right).\)
cộng vế với vế (1) và (2) ta có : \(x+y+20\ge4\left(\sqrt{x}+2\sqrt{y}\right)=40.\)
=> \(x+y\ge20.\)dấu "=" xảy ra khi x = 4 ; y = 16
Cho x, y, z >0 và xyz=100
CMR: \(\frac{\sqrt{x}}{\sqrt{xy}+\sqrt{x}+10}+\frac{\sqrt{y}}{\sqrt{yz}+\sqrt{y}+1}+\frac{10\sqrt{z}}{\sqrt{xz}+\sqrt{z}+10}=1\)
cho x,y,z >0. CMR
\(\frac{x}{\sqrt{x}+\sqrt{y}}+\frac{y}{\sqrt{y}+\sqrt{z}}+\frac{z}{\sqrt{x}+\sqrt{z}}=\frac{y}{\sqrt{x}+\sqrt{y}}+\frac{z}{\sqrt{y}+\sqrt{z}}+\frac{x}{\sqrt{x}+\sqrt{z}}\)
10 tik nha !!!!!!!!
\(\frac{x}{\sqrt{x}+\sqrt{y}}-\frac{y}{\sqrt{x}+\sqrt{y}}=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}=\sqrt{x}-\sqrt{y}\)
\(tt:\frac{y-z}{\sqrt{y}+\sqrt{z}}=\sqrt{y}-\sqrt{z};.....\)
\(\Rightarrow\frac{x}{\sqrt{x}+\sqrt{y}}-\frac{y}{\sqrt{y}+\sqrt{x}}+.....-\frac{x}{\sqrt{x}+\sqrt{z}}=0\Rightarrow dpcm\)
Cho \(\sqrt{x}+2\sqrt{y}=10\) CMR x+y\(\ge\)0
Chắc bạn ghi nhầm đề, ĐKXĐ là \(\left\{{}\begin{matrix}x\ge0\\y\ge0\end{matrix}\right.\)
\(\Rightarrow x+y\ge0\)
Dấu "=" xảy ra khi \(x=y=0\) không phù hợp giả thiết
Áp dụng BĐT Bunhiacopxki ta có:
\(100=\left(\sqrt{x}+2\sqrt{y}\right)^2\le\left(1+4\right)\left(x+y\right)\)
\(\Rightarrow x+y\ge25\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=16\\y=9\end{matrix}\right.\)
Mấy bạn giúp mình bài này nha!
1) Tính A=(\(\sqrt{6}+\sqrt{2}\))*(\(\sqrt{3}-2\))*\(\sqrt{2+\sqrt{3}}\)
2) Cho x=4+\(\sqrt{10}\)
Tính A=\(\sqrt{3x+\sqrt{6x-1}}+\sqrt{3x-\sqrt{6x-1}}\)
3) Cho \(\sqrt{x}+\sqrt{y}-\sqrt{z}=0\)
CMR: \(\dfrac{1}{x+y-z}+\dfrac{1}{y+z-x}+\dfrac{1}{z+x-y}=0\)
4) Cho (\(\sqrt{x^2+5}+x\))*(\(\sqrt{y^2+5}+y\))=4
CMR: x+y=0
Cho x,y,a tm:
\(\sqrt{x^2+\sqrt[3]{x^4y^2}}+\sqrt{y^2+\sqrt[3]{y^4x^2}}=a\)
CMR: \(\sqrt[3]{a^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
Kiểm tra lại đề bài đi em, chỗ CMR đó
Đặt \(\sqrt[3]{x^2}=m\Leftrightarrow x^2=m^3;\sqrt[3]{y^2}=n\Leftrightarrow y^2=n^3\)
Thay vào biểu thức:
\(\Leftrightarrow\sqrt{m^3+m^2n}+\sqrt{n^3+mn^2}=a\\ \Leftrightarrow m^3+n^3+mn\left(m+n\right)+2\sqrt{\left(m^3+m^2n\right)\left(n^3+mn^2\right)}=a^2\\ \Leftrightarrow m^3+n^3+mn\left(m+n\right)+2\sqrt{m^2n^2\left(m+n\right)}=a^2\\ \Leftrightarrow m^3+n^3+3mn\left(m+n\right)=a^2\\ \Leftrightarrow\left(m+n\right)^3=a^2\\ \Leftrightarrow m+n=\sqrt[3]{a^2}\\ \Leftrightarrow\sqrt[3]{x^2}+\sqrt[3]{y^2}=\sqrt[3]{a^2}\)
Em chắc chắn là đề bài đúng chứ? Trước khi nhìn kĩ lại?