tìm GTNN:A=|x-2001|+|x-1|
Tìm GTNN:A=|x-1|+|x-2|+|x-3|+|x-4|
\(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|x-4\right|\)
\(A=\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\)
+) Đặt \(B=\left|x-1\right|+\left|4-x\right|\ge\left|x-1+4-x\right|=3\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(x-1\right)\left(4-x\right)=0\)
\(\Leftrightarrow1\le x\le4\)
+) Đặt \(C=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1\)
Dấu bằng xảy ra \(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow2\le x\le3\)
\(\Rightarrow A=\left|x-1\right|+\left|4-x\right|+\left|x-2\right|+\left|3-x\right|\ge4\)
Dấu '' = '' xảy ra
\(\Leftrightarrow\hept{\begin{cases}1\le x\le4\\2\le x\le3\end{cases}\Leftrightarrow2\le x\le3}\)
Vậy.................
Alan Walker bạn vào câu hỏi này tham khảo nha : https://olm.vn/hoi-dap/detail/211209248935.html
Hoặc bạn vào trong câu hỏi tương tự nha !
Tìm GTNN:A=|x-1|+|x-2|+|x-3|
B=|x-1|+|x+2|+|x-3|
Ta có : \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
\(\left|x-2\right|+\left|x-1\right|+\left|3-x\right|\ge\left|x-2\right|+\left|x-1+3-x\right|=\left|x-2\right|+\left|2\right|=\left|x-2\right|+2\)
Lại có : \(\left|x-2\right|\ge0=>\left|x-2\right|+2\ge2\)
Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2=0\\2\le x\le3\end{cases}}=>x=2\)(cái 2 bé hơn bằng x bé hơn bằng 3 là xảy ra khi |x-1|+|3-x|=|x-1+3-x| đó nha , cái phần này thì bạn xét trường hợp sẽ có : 2 <=x<=3)
Vậy A đạt giá trị nhỏ nhất là 2 khi x=2
Bài này thì mik nhớ phương pháp làm là ghép thằng |x-1| và |x-3| lại chứ mik ko rõ làm sao mà phải ghép nha sorry bạn , phần này hồi lớp 7 mik ko học kĩ lắm
B tương tự , chúc bạn học tốt !
Tìm GTNN:
a) A= |x-1| + |x-2| + |x-3| + ... + |x-99|
b) B = |2x-3|+ |x-6| + |x+1|
Tìm GTNN:A=|x-1|+|x-2|+|x-3|
B=|x-1|+|x+2|+|x-3|
C=|x-1|+|x-2|+|x-3|+|x-4|
Tìm GTNN:
a) A=-x^2-4x-2
\(a,A=-x^2-4x-2\)
\(=-\left(x^2+4x+2\right)\)
\(=-\left(x^2+4x+4\right)+2\)
\(=-\left(x^2+2\cdot x\cdot2+2^2\right)+2\)
\(=-\left(x+2\right)^2+2\)
Ta thấy: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+2\right)^2+2\le2\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(Max_A=2\) khi \(x=-2\).
Cậu xem lại giúp mình có sai đề bài không nhé!
#\(Toru\)
Tìm GTNN:
A=5x^2 -x +2
B=3x^2 -y+2y^2+x-11
\(A=5\left(x^2-\dfrac{1}{5}x+\dfrac{1}{100}\right)+\dfrac{39}{20}=5\left(x-\dfrac{1}{10}\right)^2+\dfrac{39}{20}\ge\dfrac{39}{20}\)
\(A_{min}=\dfrac{39}{20}\) khi \(x=\dfrac{1}{10}\)
\(B=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}\right)+2\left(y^2-\dfrac{1}{2}y+\dfrac{1}{16}\right)-\dfrac{269}{24}=3\left(x+\dfrac{1}{6}\right)^2+2\left(y-\dfrac{1}{4}\right)^2-\dfrac{269}{24}\ge-\dfrac{269}{24}\)
\(B_{min}=-\dfrac{269}{24}\) khi \(x=-\dfrac{1}{6};y=\dfrac{1}{4}\)
A= 5x2-xz+2
A= (√5.x)2-2.√5.x.\(\dfrac{\text{√5}}{10}\)+\(\dfrac{1}{20}+\dfrac{39}{20}\)
A=(√5.x-\(\dfrac{\text{√5}}{10}\))2+\(\dfrac{39}{20}\)≥\(\dfrac{39}{20}\)
Dấu "=" xảy ra ⇔ (√5.x-\(\dfrac{\text{√5}}{10}\))=0
⇔ √5.x=\(\dfrac{\text{√5}}{10}\) ⇔ x=\(\dfrac{1}{10}\)
Vậy GTNN của A=\(\dfrac{39}{20}\) tại x=\(\dfrac{1}{10}\)
Tìm GTLN, GTNN:
a, \(y=\sin x+\cos x\).
b, \(y=\dfrac{1}{2}\sin x+\dfrac{\sqrt{3}}{2}\cos x+3\).
c, \(y=\sqrt{3}\sin2x-\cos2x\).
a: \(y=\sqrt{2}sin\left(x+\dfrac{pi}{4}\right)\)
\(-1< =sin\left(x+\dfrac{pi}{4}\right)< =1\)
=>\(-\sqrt{2}< =y< =\sqrt{2}\)
\(y_{min}=-\sqrt{2}\) khi sin(x+pi/4)=-1
=>x+pi/4=-pi/2+k2pi
=>x=-3/4pi+k2pi
\(y_{max}=\sqrt{2}\) khi sin(x+pi/4)=1
=>x+pi/4=pi/2+k2pi
=>x=pi/4+k2pi
b: \(y=sinx\cdot cos\left(\dfrac{pi}{3}\right)+cosx\cdot sin\left(\dfrac{pi}{3}\right)+3\)
\(=sin\left(x+\dfrac{pi}{3}\right)+3\)
-1<=sin(x+pi/3)<=1
=>-1+3<=sin(x+pi/3)+3<=4
=>2<=y<=4
y min=2 khi sin(x+pi/3)=-1
=>x+pi/3=-pi/2+k2pi
=>x=-5/6pi+k2pi
y max=4 khi sin(x+pi/3)=1
=>x+pi/3=pi/2+k2pi
=>x=pi/6+k2pi
c: \(y=2\cdot\left(sin2x\cdot\dfrac{\sqrt{3}}{2}-cos2x\cdot\dfrac{1}{2}\right)\)
\(=2sin\left(2x-\dfrac{pi}{6}\right)\)
-1<=sin(2x-pi/6)<=1
=>-2<=y<=2
y min=-2 khi sin(2x-pi/6)=-1
=>2x-pi/6=-pi/2+k2pi
=>2x=-1/3pi+k2pi
=>x=-1/6pi+kpi
y max=2 khi sin(2x-pi/6)=1
=>2x-pi/6=pi/2+k2pi
=>2x=2/3pi+k2pi
=>x=1/3pi+kpi
Tìm GTLN, GTNN:
a, \(y=4\sin^2x-4\sin x+3\).
b, \(y=\cos^2x+2\sin x+2\).
c, \(y=\sin^4x-2\cos^2x+1\).
a.
Tìm min:
$y=(4\sin ^2x-4\sin x+1)+2=(2\sin x-1)^2+2$
Vì $(2\sin x-1)^2\geq 0$ với mọi $x$ nên $y=(2\sin x-1)^2+2\geq 0+2=2$
Vậy $y_{\min}=2$
----------------
Mặt khác:
$y=4\sin x(\sin x+1)-8(\sin x+1)+11$
$=(\sin x+1)(4\sin x-8)+11$
$=4(\sin x+1)(\sin x-2)+11$
Vì $\sin x\in [-1;1]\Rightarrow \sin x+1\geq 0; \sin x-2<0$
$\Rightarrow 4(\sin x+1)(\sin x-2)\leq 0$
$\Rightarrow y=4(\sin x+1)(\sin x-2)+11\leq 11$
Vậy $y_{\max}=11$
b.
$y=\cos ^2x+2\sin x+2=1-\sin ^2x+2\sin x+2$
$=3-\sin ^2x+2\sin x$
$=4-(\sin ^2x-2\sin x+1)=4-(\sin x-1)^2\leq 4-0=4$
Vậy $y_{\max}=4$.
---------------------------
Mặt khác:
$y=3-\sin ^2x+2\sin x = (1-\sin ^2x)+(2+2\sin x)$
$=(1-\sin x)(1+\sin x)+2(1+\sin x)=(1+\sin x)(1-\sin x+2)$
$=(1+\sin x)(3-\sin x)$
Vì $\sin x\in [-1;1]$ nên $1+\sin x\geq 0; 3-\sin x>0$
$\Rightarrow y=(1+\sin x)(3-\sin x)\geq 0$
Vậy $y_{\min}=0$
c.
$y=\sin ^4x-2\cos ^2x+1=\sin ^4x-2(1-\sin ^2x)+1$
$=\sin ^4x+2\sin ^2x-1$
$=(\sin ^4x-1)+(2\sin ^2x-2)+2$
$=(\sin ^2x-1)(\sin ^2x+1)+2(\sin ^2x-1)+2$
$=(\sin ^2x-1)(\sin ^2x+3)+2$
Vì $\sin x\in [-1;1]$ nên $\sin ^2x\leq 1$
$\Rightarrow (\sin ^2x-1)(\sin ^2x+3)\leq 0$
$\Rightarrow y=(\sin ^2x-1)(\sin ^2x+3)+2\leq 2$
Vậy $y_{\max}=2$
------------------------------------------
$y=\sin ^4x+2\sin ^2x-1=\sin ^2x(\sin ^2x+2)-1$
Vì $\sin ^2x\geq 0$ nên $\sin ^2x(\sin ^2x+2)\geq 0$
$\Rightarrow y=\sin ^2x(\sin ^2x+2)-1\geq 0-1=-1$
Vậy $y_{\min}=-1$
tìm GTNN:
a) B=x^2+4y^2+4(x-y)
b)C=x^2+y^2-xy+4x-5y+1018
\(C=\left(x^2+\dfrac{y^2}{4}+4-xy+4x-2y\right)+\dfrac{3}{4}\left(y^2-4y+4\right)+1011\)
\(=\left(x-\dfrac{y}{2}+2\right)^2+\dfrac{3}{4}\left(y-2\right)^2+1011\ge1011\)
Dấu "=" xảy ra khi \(\left(x;y\right)=\left(-1;2\right)\)
a) Ta có: \(B=x^2+4y^2+4x-4y\)
\(=\left(x^2+4x+4\right)+\left(4y^2-4y+1\right)-5\)
\(=\left(x+2\right)^2+\left(2y-1\right)^2-5\ge-5\forall x,y\)
Dấu '=' xảy ra khi \(\left(x,y\right)=\left(-2;\dfrac{1}{2}\right)\)