Cho tam giác ABC. D là trung điểm của AB, E là trung điểm của AC. Gọi O là 1 điểm bất kì nằm trong tam giác ABC. Vẽ điểm M đối xứng với O qua D, điểm N đối xứng với O qua E. CMR: MNCB là hình bình hành.
Cho tam giác ABC. D là trung điểm của AB, E là trung điểm của AC. Gọi O là 1 điểm bất kì nằm trong tam giác ABC. Vẽ điểm M đối xứng với O qua D, điểm N đối xứng với O qua E. CMR: MNCB là hình bình hành.
Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Gọi O là một điểm bất kì nằm trong tam giác ABC. Vẽ điểm M đối xứng với O qua D, vé điểm N đối xứng với O qua E.
Chứng minh rằng MNCB là hình bình hành ?
Tứ giác AOBM có các đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành suy ra :
BM // OA, BM = OA (1)
Chứng minh tương tự ta có :
NC // OA, NC = OA (2)
Từ (1) và (2) suy ra BM // NC, BM = NC
Vậy MNCB là hình bình hành
Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Gọi O là một điểm bất kỳ nằm trong tam giác ABC. Vẽ điểm M đối xứng với O qua D. Vẽ điểm N đối xứng với O qua E. Chứng minh rằng MNCB là hình bình hành.
* Xét tứ giác AOBM, ta có:
DA = DB (gt)
DO = DM (định nghĩa đối xứng tâm)
Suy ra: Tứ giác AOBM là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
⇒ BM // AO và BM = AO (1)
* Xét tứ giác AOCN, ta có: EA = EC (gt)
EO = EN (định nghĩa đối xứng tâm)
Suy ra: Tứ giác AOCN là hình bình hành (vì có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
⇒ CN // AO và CN = AO (2)
Từ (1) và (2) suy ra:BM // CN và BM = CN.
Vậy tứ giác BMNC là hình bình hành (vì có 1 cặp cạnh đối song song và bằng nhau).
Cho tam giác ABC, gọi D, E lần lượt là trung điểm của AB, AC.Gọi o là điểm bất kì nằm trong tam giác ABC. Vẽ M đối xứng với O qua D, vẽ N đối xứng với O qua E. Chứng minh MNCB là hình bình hành
D là trung điểm của AB
E là trung điểm của AC
=> DE là đường trung bình của tam giác ABC
=> DE // BC (1)
DE = BC/2 (2)
D là trung điểm của OM (M đối xứng với O qua D)
E là trung điểm của ON (N đối xứng với O qua E)
=> DE là đường trung bình của tam giác OMN
=> DE // MN (3)
DE = MN/2 (4)
Từ (1) và (3)
=> MN // BC (5)
Từ (2) và (4)
=> MN = BC (6)
Từ (5) và (6)
=> MNCB là hình bình hành
Δ ABC có: D là trung điểm của AB
E là trung điểm của AC
=> DE là đường trung bình của ΔABC
=> DE=1/2 BC và DE//BC (1)
Δ MON có: D là trung điểm của cạnh OM
E là trung điểm của cạnh ON
=> DE là đường trung bình của Δ MON
=> DE=1/2 MN và DE//MN (2)
Từ (1) (2) => BC= MN và BC//MN( //DE)
Tứ giác MNCB có: BC=MN và BC//MN
=> MNBC và hình bình hành
Cho ΔABC, gọi D, E theo thứ tự là trung điểm của AB, AC. Gọi O là điểm bất kì nằm trong ΔABC. Vẽ điểm M đối xứng O qua D, vẽ điểm N đối xứng với O qua E. Chứng minh rằng MNCB là hình bình hành Cho ΔABC, gọi D, E theo thứ tự là trung điểm của AB, AC. Gọi O là điểm bất kì nằm trong ΔABC. Vẽ điểm M đối xứng O qua D, vẽ điểm N đối xứng với O qua E. Chứng minh rằng MNCB là hình bình hành
Cho tam giác ABC; D là trung điểm của AB; E là trung điểm của AC. Gọi O là điểm bất kì trong tam giác ABC. Vẽ điểm M đối xứng với O qua D, vẽ điểm N đối xứng với O qua E.
a) Chứng minh tứ giác OAMB là hình bình hành
b) Chứng minh OA// CN
c) Chứng minh MNCB là hình bình hành.
a: Xét tứ giác OAMB có
D là trung điểm của AB
D là trung điểm của OM
Do đó: OAMB là hình bình hành
Cho tam giác ABC. D,E,F thể thứ tự là trung điểm của BC, AC,AB. Gọi O là 1 điểm bất kì, A' là 1 điểm đối xứng với O qua D, B' là điểm đối xứng với O qua E, C' là điểm đối xứng với O qua F
Cmr AA', BB',CC' đồng qui
Cho tam giác ABC. Gọi D, E, F lần lượt là trung điểm của BC, AC, AB. Gọi O là 1 điểm bất kì. A' là điểm đối xứng với O qua D, B' là điểm đối xứng với O qua E, C' là điểm đối xứng với O qua F. Chứng minh AA', BB', CC' đồng quy tại 1 điểm.
Võ Hồng Nhung
1 phút trước (15:05)
Cho tam giác ABC. Gọi D, E, F lần lượt là trung điểm của BC, AC, AB. Gọi O là 1 điểm bất kì. A' là điểm đối xứng với O qua D, B' là điểm đối xứng với O qua E, C' là điểm đối xứng với O qua F. Chứng minh AA', BB', CC' đồng quy tại 1 điểm.
Cho tam giác ABC, điểm O nằm trong tam giác. Gọi A' là điểm đối xứng với O trung điểm D của BC, B' là điểm đối xứng với O qua trung điểm E của AC, C' là điểm đối xứng với O qua trung điểm F của AB.Chứng minh rằng tam giác ABC = tam giác A'B'C' .
Xét tam giác COA tao có FD là đường trung bình
=> FD = 1/2 A'C'
chứng minh tương tự FD = 1/2 AC => A'C' =AC
chứng minh tương tự B'C"= BC; A'B'=AB
vậy tam giác ABC =tam giác A'B'C'