tứ giác ABCD có \(\widehat{A}=\widehat{B}\), BC=AD. CM: ABCD là hình thang cần
Cho tứ giác ABCD \(AB=BC=AD\) , và\(\widehat{DAB}\) + \(\widehat{BCD}\) = \(^{^{ }180^o}\)
a) Chứng minh rằng DB là tia phân giác của góc \(\widehat{ADC}\) ?
b) Chứng minh rằng tứ giác ABCD là hình thang cân ?
a. Ta có: AD = AB
=> \(\Delta ABD\) là tam giác cân
=> Góc ADB = góc ABD (1)
Mà góc ABD = góc BDC (so le trong) (2)
Từ (1) và (2), suy ra:
BD là tia phân giác của góc ADC
b. Nối AC
Xét 2 tam giác ABC và ABD có:
AD = BC (gt)
AB chung
=> \(\Delta ABD\sim\Delta ABC\) (1)
Ta có: AD = AB = BC (2)
Từ (1) và (2), suy ra: \(\Delta ABD=\Delta ABC\)
=> Góc A = góc B
Ta có: AB//CD
=> Góc D + góc A = 90o (2 góc trong cùng phía)
Mà góc A = góc B
=> Góc C = góc D
=> ABCD là hình thang cân
Nhưng bậy giờ bn chỉ cần chứng minh đó là hình thang là đc
Tứ giác ABCD có \(\widehat{A}\)= \(\widehat{B}\); BC = AD. C/m ABCD là hình thang cân
Xét\(\Delta ABC\) và \(\Delta ABD\)có :
BC = AD
BAD = ABC (gt)
AB chung
=> \(\Delta ABC=\Delta ABD\)(c.g.c)
=> AC = BD
=> ABD = BAC
=> \(\Delta AOB\) cân tại O
=> AO = OB
Mà AO + OC = AC
BO + OD = BD
AC = BD
=> \(\Delta ODC\) cân tại O
=> ODC = OCD
Xét \(\Delta\)OAB có :
OBA = \(\frac{180-AOB}{2}\)
Xét \(\Delta ODC\)có
ODC =\(\frac{180-DOC}{2}\)
Mà AOB = DOC ( đối đỉnh )
=> OBA = ODC
Mà 2 góc này ở vị trí so le trong
=> AB//CD
Mà AC = BD (cmt)
=> ABCD là hình thang cân
Cho tứ giác ABCD có AD=AB=BC. Biết \(\widehat{A}+\widehat{C}=180\) . chứng minh :
a, DB là phân giác góc D
b, ABCD là hình thang cân
cho tứ giác abcd có ad=ab=bc và gốc Á+góc C=180.CMR a)tia DB là tia phân giác của góc ADC.b) Tứ giác ABCD là hình thang cân
a, Xet tu giac ABCD co \(\widehat{BAC}+\widehat{BCD}=180° \)→Tu giac ABCD la tu giac noi tiep\(→\hept{\begin{cases}\widehat{CAB}=\widehat{BDC}\\\widehat{ADB}=\widehat{ACB}\end{cases}}\)
Mat khac do AB=BC nen tam giac ABC can suy ra \(\widehat{CAB}=\widehat{ACB}\)
Tu day ta co \(\widehat{BCD}=\widehat{ADB}\)hay DB la phan giac cua \(\widehat{ADC}\)
Tứ giác ABCD có AD = AB = BC, \(\widehat{A}+\widehat{C}=180^0\).
CMR:
a) DB là tia phân giác của\(\widehat{D}\)
b) ABCD là hình thang cân
Cho tứ giác ABCD có \(\hat{A}\)= 100o, \(\widehat{B}\)= 100o, \(\widehat{D}\)= 80o. Lấy E,F lần lượt là trung điểm của AD, BC. O là giao điểm của AC và BD.
a) CMR: ABCD là hình thang cân và tính góc C.
b) Cho AB = 20 cm, CD = 30cm. Tính EF, EO, FO.
c) CMR: \(\Delta\)ABC = \(\Delta\)ABD, \(\Delta\)ACD = \(\Delta\)BDC, \(\Delta\)AEO = \(\Delta\)BFO.
d) Giả sử AD = 20cm. Tính BC, góc ABD, góc ADB, góc AOD, góc AOB.
Cho tứ giác ABCD. Biết AD=BC=AB và \(\widehat{A}+\widehat{B}=180^o\) . Chứng minh rằng:
a/ DB là tia phân giác của \(\widehat{D}\)
b/ Tứ giác ABCD là hình thang cân.
Tứ giác ABCD có AB = BC = AD ;\(\widehat{A}=110^0;\widehat{C}=70^0\)
CMR : a, DB là tia phân giác của \(\widehat{D}\)
b, ABCD là hình thang cân
Bài 1 : Cho hình thang ABCD (AB//CD), \(\widehat{A}\)=\(\widehat{D}\)=90o , AB=11cm , AD= 12 cm, Bc = 13 cm . Tính AC
Bài 2 : Cho ΔABC cân tại A. Trên cạnh AB,AC lấy điểm M,N sao cho BM = CN
a)Tứ giác BMNC là hình gì ? Vì sao ?
b)Tính các góc của tứ giác BMNC biết rằng \(\widehat{A}\) bằng 40o
Bài 2:
a) Xét ΔABC có
\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\left(AM=AN;AB=AC\right)\)
Do đó: MN//BC(Định lí Ta lét đảo)
Xét tứ giác BMNC có MN//BC(gt)
nên BMNC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)
Hình thang BMNC có \(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
nên BMNC là hình thang cân(Dấu hiệu nhận biết hình thang cân)
Cho tứ giác ABCD có \(\widehat{B}=110^o;\widehat{C}=120^o;\widehat{D}=60^o\)
a) Tính góc A
b) Chứng minh tứ giác ABCD là hình thang
c) Gọi M,N lần lượt là trung điểm của AB và CD. Biết BC=8cm,AD=12cm. Tính độ dài đoạn thẳng MN