Gọi giao điểm 2 đường chéo là O
Xét tam giác ABD và tam giác BAC :
góc A = góc B
AD = BC
AB là cạnh chung
=>tam giác ABD = tam giác BAC (c.g.c)
=>AC = BD ( 2 cạnh tương ứng ) (1)
=> góc OAB = góc OBA ( 2 cạnh tương ứng) => góc OAB = góc OBA = \(\frac{180^o-\widehat{AOB}}{2}\)
Xét tam giác ADC và tam giác BCD
AC = BD
AD = BC
DC là cạnh chung
=> tam giác ADC = tam giác BCD (c.c.c)
=> \(\widehat{ODC}=\widehat{OCD}\)
=> \(\hept{\begin{cases}\widehat{ODC}=\widehat{OCD}=\frac{180^o-\widehat{DOC}}{2}\\\widehat{OAB}=\widehat{OBA}=\frac{180^o-\widehat{AOB}}{2}\\\widehat{DOC}=\widehat{AOB}\end{cases}}\)
=> \(\widehat{BAD}=\widehat{ADC}\)
mà 2 góc trên ở vị trí so le trong
=> AB song song với DC (2)
Từ (1) và (2) => ABCD là hình thanh cân (đpcm)