Tìm GTLN của
a,A=5-(2x-1)
b,\(\dfrac{1}{\left(x-1\right)^2+3}\)
các bn giúp mk vs
Tìm x biết:
a) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
b) \(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
CÁC BN GIẢI CHI TIẾT BÀI NÀY GIÚP MK VS.
a) \(\frac{2}{3}-\frac{1}{3}\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)\(5\)
=> \(\frac{2}{3}-\left(\frac{1}{3}x-\frac{1}{2}\right)-\left(x+\frac{1}{2}\right)=5\)
=>\(\frac{2}{3}-\frac{1}{3}x+\frac{1}{2}-x-\frac{1}{2}=5\)
=>\(\left(\frac{2}{3}+\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}x+x\right)=5\)
=>\(\frac{2}{3}-\frac{4}{3}x=5\)
=>\(\frac{4}{3}x=\frac{2}{3}-5=-\frac{13}{3}\)
=>\(x=-\frac{13}{3}:\frac{4}{3}=-\frac{13}{4}\)
b)\(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
=>\(4x-x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)
=> \(3x-\frac{1}{2}=2x-\left(-\frac{9}{2}\right)\)
=>\(x=-\left(-\frac{9}{2}\right)+\frac{1}{2}=5\)
Tìm GTNN và GTLN nếu có của các biểu thức
\(A=\dfrac{2x^2-2x+5}{\left(x+1\right)^2}\)
\(B=\dfrac{4x^2+x+4}{x^2+x+1}\)
a) Tìm GTNN Của:
A=\(\left(2x+\dfrac{1}{3}\right)^4-1\)
a) Tìm GTLN Của:
B=\(-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)
\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)
vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)
\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)
Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)
\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)
vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)
\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)
Dấu "=" xảy ra khi và chỉ khi
\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)
\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)
\(B=\left(\dfrac{3X^3+3}{X^3-1}-\dfrac{X-1}{X^2+X+1}-\dfrac{1}{X-1}\right)\times\dfrac{X-1}{2X^2-5X+5}\)
a) Rút gọn B
b) Tìm GTLN của B
----------------------------GIÚP MS VS , MK ĐG CẦN GẤP -----------------------------------------------
1)
\(A=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
a) rút gọn A
b) tìm x nguyên để A nguyên
c) tìm x để \(\left|A\right|=A\)
2)
\(B=\left(\dfrac{3X^3+3}{X^3-1}-\dfrac{X-1}{X^2+X+1}-\dfrac{1}{X-1}\right)\times\dfrac{X-1}{2X^2-5X+5}\)
a) rút gọn B
b) tính GTLN của B
GIÚP MK VS - CẢM ƠN NHIỀU
1/ đkxđ: x≠\(\pm\)1; x≠1/2
a/\(A=\left(\dfrac{1}{1-x}+\dfrac{2}{x+1}-\dfrac{5-x}{1-x^2}\right):\dfrac{1-2x}{x^2-1}\)
\(=\left(\dfrac{x+1}{\left(1-x\right)\left(1+x\right)}+\dfrac{2\left(1-x\right)}{\left(1-x\right)\left(1+x\right)}-\dfrac{5-x}{\left(1-x\right)\left(1+x\right)}\right)\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(=\dfrac{x+1+2-2x-5+x}{\left(1-x\right)\left(1+x\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}\)
\(=\dfrac{2}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{1-2x}=\dfrac{2}{1-2x}\)
b/ A nguyên <=> 1 - 2x ∈ Ư(2)
<=> 1 - 2x = {-2;-1;1;2}
<=> -2x = {-3; -2; 0;1}
<=> x = {3/2; 1; 0; -1/2}
mà x nguyên => x = {1;0}
c/ \(\left|A\right|=A\Leftrightarrow\left|\dfrac{2}{1-2x}\right|=\dfrac{2}{1-2x}\)
+) Với x > 1/2 có:
\(\dfrac{2}{1-2x}=\dfrac{2}{1-2x}\Leftrightarrow\dfrac{2}{1-2x}-\dfrac{2}{1-2x}=0\Leftrightarrow0x=0\)
=> x>1/2 thỏa mãn là nghiệm
+) Với x < 1/2 có:
\(\dfrac{2}{1-2x}=\dfrac{2}{2x-1}\)
\(\Leftrightarrow\dfrac{2}{1-2x}-\dfrac{2}{2x-1}=0\Leftrightarrow\dfrac{2}{1-2x}+\dfrac{2}{1-2x}=0\)
\(\Leftrightarrow\dfrac{4}{1-2x}=0\) mà 1 - 2x ≠ 0 => vô nghiệm
Vậy x>1/2
Tìm x biết:
a) \(\left(x+\frac{1}{2}\right).\left(x-\frac{3}{4}\right)=0\)
b) \(\left(\frac{1}{2}.x-3\right).\left(\frac{2}{3}x+\frac{1}{2}\right)=0\)
c) \(\frac{2}{3}-\frac{1}{3}.\left(x-\frac{3}{2}\right)-\frac{1}{2}\left(2x+1\right)=5\)
d) \(4x-\left(x+\frac{1}{2}\right)=2x-\left(\frac{1}{2}-5\right)\)
MONG CÁC BN GIÚP ĐỠ MK BÀI NÀY , MK ĐANG CẦN RẤT GẤP GIẢI CHI TIẾT RA GIÚP MK VS NHÉ !!!MK RẤT CẢM ƠN!
Tìm GTNN của: \(A=x\left(x+1\right)\left(x^2+x-4\right)\)
Tìm GTLN của: \(B=-x^2-y^2+xy+2x+2y\)
Các bn CTV, giỏi toán giúp mk với, cảm ơn nhìu ạ!
Ta có : A = x(x + 1)(x2 + x - 4)
= (x2 + x)(x2 + x - 4)
Đặt x2 + x = t
Khi đó A = t(t - 4)
= t2 - 4t = t2 - 4t + 4 - 4 = (t - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> t - 2 = 0
=> t = 2
=> x2 + x = 2
=> x2 + x - 2 = 0
=> x2 + 2x - x - 2 = 0
=> x(x + 2) - (x + 2) = 0
=> (x - 1)(x + 2) = 0
=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy Min A = -4 <=> x \(\in\left\{1;-2\right\}\)
A = x( x + 1 )( x2 + x - 4 )
= ( x2 + x )( x2 + x - 4 )
Đặt t = x2 + x
A <=> t( t - 4 )
= t2 - 4t
= ( t2 - 4t + 4 ) - 4
= ( t - 2 )2 - 4
= ( x2 + x - 2 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra <=> x2 + x - 2 = 0
<=> x2 - x + 2x - 2 = 0
<=> x( x - 1 ) + 2( x - 1 ) = 0
<=> ( x - 1 )( x + 2 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
=> MinA = -4 <=> x = 1 hoặc x = -2
a,\(A=x\left(x+1\right)\left(x^2+x-4\right)\)
\(=\left(x^2+x\right)\left(x^2+x-4\right)\)
Đặt \(x^2+x=t\)ta có:
\(A=t\left(t-4\right)\)
\(=t^2-4t\)
\(=\left(t^2-4t+4\right)-4\)
\(=\left(t-2\right)^2-4\ge-4\forall t\)
Dấu "="xảy ra khi \(\left(t-2\right)^2=0\Rightarrow t=2\)
\(\Rightarrow Min_A=-4\Leftrightarrow t=2\)
\(\Leftrightarrow x^2+x=2\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Leftrightarrow x=1;x=2\)
b,\(B=-x^2-y^2+xy+2x+2y\)
\(\Leftrightarrow-2B=2x^2+2y^2-2xy-4x-4y\)
\(=\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)-8\)
\(=\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2-8\ge-8\Leftrightarrow B\le4\)
Dấu"="xảy ra khi \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-2\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Rightarrow x=y=2}\)
Vậy \(Max_B=4\Leftrightarrow x=y=2\)
a, Tìm GTNN của B= 4,2 + \(\left|x+1,5\right|\)
b,Tìm GTLN của C= \(\dfrac{4}{5}-\left|2x+1\right|\)
\(a,B=4,2+\left|x+1,5\right|\ge4,2\\ B_{min}=4,2\Leftrightarrow x+1,5=0\Leftrightarrow x=-1,5\\ b,C=\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\\ C_{max}=\dfrac{4}{5}\Leftrightarrow2x+1=0\Leftrightarrow x=-\dfrac{1}{2}\)
a, Do |x +1,5| ≥ 0 ⇒ 4,2 + |x + 1,5| ≥ 4,2
Dấu "=" xảy ra ⇔ x + 1,5 = 0 ⇔ x = - 1,5
Vậy Bmin= 4,2 ⇔ x= -1,5
b, Do |2x + 1| ≥ 0 ⇒ \(\dfrac{4}{5}-\left|2x+1\right|\le\dfrac{4}{5}\)
Dấu "=" xảy ra ⇔ 2x + 1 = 0 ⇔ 2x = -1 ⇔ \(x=-\dfrac{1}{2}\)
Vậy Cmax = \(\dfrac{4}{5}\Leftrightarrow x=-\dfrac{1}{2}\)
a,\(\dfrac{1}{3}\times\left(x-1\right)+\dfrac{2}{5}\times\left(x+1\right)=0\)
b,4x-\(\left(x+\dfrac{1}{2}\right)=2x-\left(\dfrac{1}{2}x-5\right)\)
c,\(\left(x+\dfrac{1}{2}\right)\times\left(x-\dfrac{3}{4}\right)=0\)
Các bn ơi giúp mk với chiều mk đi học rồi !!!!!!!!!!
a. \(\dfrac{1}{3}.\left(x-1\right)+\dfrac{2}{5}.\left(x+1\right)=0\)
=> \(\dfrac{1}{3}x-\dfrac{1}{3}+\dfrac{2}{5}x+\dfrac{2}{5}=0\)
=> \(\dfrac{1}{3}x+\dfrac{2}{5}x=0+\dfrac{1}{3}-\dfrac{2}{5}\)
=> \(\dfrac{11}{15}x=\dfrac{-1}{15}\)
=> \(x=\dfrac{-1}{11}\)
Đây toán 8 mà? :v
a,\(\dfrac{1}{5}x\left(x-1\right)+\dfrac{2}{5}x\left(x+1\right)=0\)
\(\Leftrightarrow5x\left(x-1\right)+6x\left(x+1\right)=0\)
\(\Leftrightarrow\left[5\left(x-1\right)+6x\left(x+1\right)\right]x=0\)
\(\Leftrightarrow\left(5x-5+6x+6\right)x=0\)
\(\Leftrightarrow\left(11+1\right)x=0\)
\(\Leftrightarrow11x+1=0;x=0\)
\(\Leftrightarrow x=-\dfrac{1}{11};x=0\)
Vậy....