Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
HoàngIsChill
Xem chi tiết
Trúc Giang
20 tháng 7 2021 lúc 15:34

Chia nhỏ ra bạn ơi!

Yết Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2021 lúc 23:14

5: Ta có: \(\dfrac{2-\sqrt{2}}{1-\sqrt{2}}+\dfrac{\sqrt{2}-\sqrt{6}}{\sqrt{3}-1}\)

\(=-\sqrt{2}-\sqrt{2}\)

\(=-2\sqrt{2}\)

Yết Thiên
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 10 2021 lúc 23:18

4: Ta có: \(\dfrac{6}{1-\sqrt{3}}-\dfrac{3\sqrt{3}+3}{\sqrt{3}+1}\)

\(=-3-3\sqrt{3}-3\)

\(=-6-3\sqrt{3}\)

Triết Phan
Xem chi tiết
Nguyễn Hoàng Minh
11 tháng 10 2021 lúc 16:26

\(a,=\dfrac{3-\sqrt{2}+3+\sqrt{2}}{\left(3+\sqrt{2}\right)\left(3-\sqrt{2}\right)}=\dfrac{6}{-1}=-6\\ b,=\dfrac{6\sqrt{2}+8-6\sqrt{2}+8}{\left(3\sqrt{2}-4\right)\left(3\sqrt{2}+4\right)}=\dfrac{16}{2}=8\\ c,=\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2+\left(\sqrt{5}+\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\\ =\dfrac{8-2\sqrt{15}+8+2\sqrt{15}}{2}=\dfrac{16}{2}=8\)

\(d,=\dfrac{6\sqrt{2}+9\sqrt{3}-6\sqrt{2}+9\sqrt{3}}{\left(2\sqrt{2}-3\sqrt{3}\right)\left(2\sqrt{2}+3\sqrt{3}\right)}=\dfrac{18\sqrt{3}}{-19}=\dfrac{-18\sqrt{3}}{19}\\ e,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\\ =\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\\ =\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\\ =\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

Như Huỳnh
Xem chi tiết
qwerty
19 tháng 6 2017 lúc 10:34

a) \(\dfrac{\left(5+2\sqrt{6}\right)\left(49-20\sqrt{6}\right)\sqrt{5-2\sqrt{6}}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{\left(245-100\sqrt{6}+98\sqrt{6}-240\right)\sqrt{\left(\sqrt{2}-\sqrt{3}\right)^2}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{\left(5-2\sqrt{6}\right)\left(\sqrt{3}-\sqrt{2}\right)}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{5\sqrt{3}-5\sqrt{2}-2\sqrt{18}+2\sqrt{12}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{5\sqrt{3}-5\sqrt{2}-6\sqrt{2}+4\sqrt{3}}{9\sqrt{3}-11\sqrt{2}}\)

\(=\dfrac{9\sqrt{3}-11\sqrt{2}}{9\sqrt{3}-11\sqrt{2}}\)

\(=1\)

qwerty
19 tháng 6 2017 lúc 11:38

b)

\(\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2}{\sqrt{6}}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)

\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{2\sqrt{6}}{6}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)

\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{\sqrt{2+\sqrt{3}}}{2}-\dfrac{\sqrt{6}}{3}+\dfrac{\sqrt{2+\sqrt{3}}}{2\sqrt{3}}}\)

\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{3\sqrt{3\left(2+\sqrt{3}\right)}-2\sqrt{18}+3\sqrt{2+\sqrt{3}}}{6\sqrt{3}}}\)

\(=\dfrac{\dfrac{\sqrt{2+\sqrt{3}}}{2}}{\dfrac{3\sqrt{6+3\sqrt{3}-6\sqrt{2}+3\sqrt{2+\sqrt{3}}}}{6\sqrt{3}}}\)

\(=\dfrac{3\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{3\sqrt{6+3\sqrt{3}}-6\sqrt{2}+3\sqrt{2+\sqrt{3}}}\)

\(=\dfrac{3\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{3\left(\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}\right)}\)

\(=\dfrac{\sqrt{\left(2+\sqrt{3}\right)\cdot3}}{\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{6+3\sqrt{3}}}{\sqrt{6+3\sqrt{3}}-2\sqrt{2}+\sqrt{2+\sqrt{3}}}\)

\(=\dfrac{\sqrt{\left(6+3\sqrt{3}\right)\left(-\sqrt{3}+2+\sqrt{3}\right)}}{-2\sqrt{3}}\)

\(=\dfrac{\sqrt{\left(6+3\sqrt{3}\right)\cdot2}}{-2\sqrt{3}}\)

\(=\dfrac{\sqrt{12+6\sqrt{3}}}{-2\sqrt{3}}\)

\(=\dfrac{\sqrt{\left(3+\sqrt{3}\right)^2}}{-2\sqrt{3}}\)

\(=\dfrac{3+\sqrt{3}}{-2\sqrt{3}}\)

\(=-\dfrac{\left(3+\sqrt{3}\right)\sqrt{3}}{6}\)

\(=-\dfrac{3\sqrt{3}+3}{6}\)

\(=-\dfrac{3\left(\sqrt{3}+3\right)}{6}\)

\(=-\dfrac{\sqrt{3}+1}{2}\)

qwerty
19 tháng 6 2017 lúc 11:58

\(\dfrac{1+\dfrac{\sqrt{3}}{2}}{1+\sqrt{1+\dfrac{\sqrt{3}}{2}}}+\dfrac{1-\dfrac{\sqrt{3}}{2}}{1-\sqrt{1-\dfrac{\sqrt{3}}{2}}}\)

\(=\dfrac{\left(1+\dfrac{\sqrt{3}}{2}\right)\cdot\left(1-\sqrt{1+\dfrac{\sqrt{3}}{2}}\right)}{-\dfrac{\sqrt{3}}{2}}+\dfrac{\left(1-\dfrac{\sqrt{3}}{2}\right)\cdot\left(1+\sqrt{1-\dfrac{\sqrt{3}}{2}}\right)}{\dfrac{\sqrt{3}}{2}}\)

\(=\dfrac{1-\sqrt{1+\dfrac{\sqrt{3}}{2}}+\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3\left(1+\dfrac{\sqrt{3}}{2}\right)}}{2}}{-\dfrac{\sqrt{3}}{2}}+\dfrac{\left(1-\dfrac{\sqrt{3}}{2}\right)\cdot\left(1+\sqrt{1-\dfrac{\sqrt{3}}{2}}\right)\cdot2}{\sqrt{3}}\)

\(=\dfrac{1-\sqrt{1+\dfrac{\sqrt{3}}{2}}+\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{3+\dfrac{3\sqrt{3}}{2}}}{2}}{-\dfrac{\sqrt{3}}{2}}+\dfrac{\left(2-\sqrt{3}\right)\cdot\left(1+\sqrt{1-\dfrac{\sqrt{3}}{2}}\right)}{\sqrt{3}}\)

\(=\dfrac{1-\sqrt{1+\dfrac{\sqrt{3}}{2}}+\dfrac{\sqrt{3}-\sqrt{3+\dfrac{3\sqrt{3}}{2}}}{2}}{\sqrt{3}}+\dfrac{2+2\sqrt{1-\dfrac{\sqrt{3}}{2}}-\sqrt{3}-\sqrt{3-\dfrac{3\sqrt{3}}{2}}}{\sqrt{3}}\)

\(=\dfrac{-\left(2-2\sqrt{1+\dfrac{\sqrt{3}}{2}}+\sqrt{3}-\sqrt{3+\dfrac{3\sqrt{3}}{2}}\right)+2\cdot2\sqrt{1-\dfrac{\sqrt{3}}{2}}-\sqrt{3}-\sqrt{3-\dfrac{3\sqrt{2}}{2}}}{\sqrt{3}}\)

\(=1\)

Nhi Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 13:01

a: \(\dfrac{3}{\sqrt{2}}+\sqrt{\dfrac{1}{2}}-2\sqrt{18}+\sqrt{\left(1-\sqrt{2}\right)^2}\)

\(=\dfrac{3}{2}\sqrt{2}+\dfrac{1}{2}\sqrt{2}-2\cdot3\sqrt{2}+\left|1-\sqrt{2}\right|\)

\(=2\sqrt{2}-6\sqrt{2}+\sqrt{2}-1=-3\sqrt{2}-1\)

b: \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{18}}+\dfrac{\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{4\sqrt{3}+2\sqrt{2}+\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{5\sqrt{3}+\sqrt{2}}{12}\)

c: \(\sqrt[3]{\dfrac{3}{4}}\cdot\sqrt[3]{\dfrac{9}{16}}=\sqrt[3]{\dfrac{3}{4}\cdot\dfrac{9}{16}}=\sqrt[3]{\dfrac{27}{64}}=\dfrac{3}{4}\)

d: \(\dfrac{\sqrt[3]{54}}{\sqrt[3]{-2}}=\sqrt[3]{\dfrac{54}{-2}}=-\sqrt[3]{27}=-3\)

e: \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}+7}=0\)

Phạm Mạnh Kiên
Xem chi tiết
Akai Haruma
6 tháng 7 2021 lúc 17:36

1. Sửa đề:

\(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}+\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}=\frac{(\sqrt{2+\sqrt{3}})^2+(\sqrt{2-\sqrt{3}})^2}{\sqrt{(2+\sqrt{3})(2-\sqrt{3})}}\)

\(=\frac{2+\sqrt{3}+2-\sqrt{3}}{\sqrt{2^2-3}}=\frac{4}{1}=4\)

 

Akai Haruma
6 tháng 7 2021 lúc 17:38

2.

\(\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}}-\sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}=\frac{(\sqrt{2+\sqrt{3}})^2-(\sqrt{2-\sqrt{3}})^2}{\sqrt{(2+\sqrt{3})(2-\sqrt{3})}}\)

\(=\frac{2+\sqrt{3}-(2-\sqrt{3})}{\sqrt{2^2-3}}=\frac{2\sqrt{3}}{1}=2\sqrt{3}\)

 

 

Akai Haruma
6 tháng 7 2021 lúc 17:40

3.

\(\frac{3}{\sqrt{6}-\sqrt{3}}+\frac{4}{\sqrt{7}+\sqrt{3}}=\frac{3(\sqrt{6}+\sqrt{3})}{(\sqrt{6}-\sqrt{3})(\sqrt{6}+\sqrt{3})}+\frac{4(\sqrt{7}-\sqrt{3})}{(\sqrt{7}+\sqrt{3})(\sqrt{7}-\sqrt{3})}\)

\(=\frac{3(\sqrt{6}+\sqrt{3})}{3}+\frac{4(\sqrt{7}-\sqrt{3})}{4}=\sqrt{6}+\sqrt{3}+\sqrt{7}-\sqrt{3}=\sqrt{6}+\sqrt{7}\)

 

Phương
Xem chi tiết
HT.Phong (9A5)
10 tháng 7 2023 lúc 12:27

\(\dfrac{6-\sqrt{6}}{\sqrt{6}-1}+\dfrac{6-\sqrt{6}}{\sqrt{6}}\)

\(=\dfrac{\sqrt{6}\cdot\sqrt{6}-\sqrt{6}}{\sqrt{6}-1}+\dfrac{\sqrt{6}\cdot\sqrt{6}-\sqrt{6}}{\sqrt{6}}\)

\(=\dfrac{\sqrt{6}\left(\sqrt{6}-1\right)}{\sqrt{6}-1}+\dfrac{\sqrt{6}\left(\sqrt{6}-1\right)}{\sqrt{6}}\)

\(=\dfrac{\sqrt{6}}{1}+\dfrac{\sqrt{6}-1}{1}\)

\(=\sqrt{6}+\sqrt{6}-1\)

\(=2\sqrt{6}-1\)

=======================

\(\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{18}+2\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{6}\cdot\sqrt{3}+\sqrt{6}\cdot\sqrt{2}}\)

\(=\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{3}{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}\)

\(=\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}-\dfrac{3\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}\)

\(=\dfrac{\sqrt{6}\left(\sqrt{2}+\sqrt{3}\right)-3\left(\sqrt{2}-\sqrt{3}\right)}{-\sqrt{6}}\)

\(=\dfrac{2\sqrt{3}+3\sqrt{2}-3\sqrt{2}+3\sqrt{3}}{-\sqrt{6}}\)

\(=\dfrac{5\sqrt{3}}{-\sqrt{6}}=-\dfrac{5}{\sqrt{2}}\)

truong thao my
Xem chi tiết
F.C
2 tháng 9 2017 lúc 19:03

1/

\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{1+\sqrt{2}}-\dfrac{1}{2-\sqrt{3}}\)

\(=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{1+\sqrt{2}}-\dfrac{4-3}{2-\sqrt{3}}\)

\(=\sqrt{3}+2+\sqrt{2}-\dfrac{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}{2-\sqrt{3}}\)

\(=\sqrt{3}+2+\sqrt{2}-2-\sqrt{3}\)

\(=\sqrt{2}\)

2/

\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=\left(\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}-\dfrac{\left(\sqrt{5}\right)^2}{\sqrt{5}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(\dfrac{\left(\sqrt{5}\right)^2}{\sqrt{5}}-\dfrac{\sqrt{2}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(\sqrt{5}+\sqrt{2}\right).\left(\sqrt{5}-\sqrt{2}\right)\)

\(=-\left(5-2\right)=-3\)

#F.C

34 9/10 Chí Thành
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 10 2021 lúc 17:13

\(2,\\ a,PT\Leftrightarrow\sqrt{\left(5x-1\right)^2}=\sqrt{4\left(x+1\right)^2}\\ \Leftrightarrow\left|5x-1\right|=2\left|x+1\right|\\ \Leftrightarrow\left[{}\begin{matrix}5x-1=2\left(x+1\right)\\1-5x=2\left(x+1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=3\\7x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{7}\end{matrix}\right.\)

\(b,ĐK:x^2-3\ge0\\ PT\Leftrightarrow\sqrt{x^2-3}=x-1\\ \Leftrightarrow x^2-3=x^2-2x+1\\ \Leftrightarrow2x=4\Leftrightarrow x=2\left(tm\right)\\ c,ĐK:x\le\dfrac{7}{2}\\ PT\Leftrightarrow7-2x=x^2+7\\ \Leftrightarrow x^2+2x=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=2\left(tm\right)\end{matrix}\right.\\ d,ĐK:x\ge3\\ PT\Leftrightarrow3\sqrt{x-3}+\dfrac{1}{2}\cdot2\sqrt{x-3}-9\cdot\dfrac{1}{3}\sqrt{x-3}=2\\ \Leftrightarrow\sqrt{x-3}=2\\ \Leftrightarrow x-3=4\Leftrightarrow x=7\left(tm\right)\)

Nguyễn Lê Phước Thịnh
10 tháng 10 2021 lúc 0:06

Bài 1: 

d: Ta có: \(\dfrac{5+2\sqrt{5}}{\sqrt{5}}-\dfrac{20}{5+\sqrt{5}}-\sqrt{20}\)

\(=\sqrt{5}+2-5+\sqrt{5}-2\sqrt{5}\)

=-3