\(\dfrac{\sqrt[]{2+\sqrt[]{3}}}{\sqrt[]{2}}=\dfrac{\sqrt[]{4+2\sqrt[]{3}}}{2}=\dfrac{\sqrt{\left(\sqrt[]{3}+1\right)^2}}{2}=\dfrac{\sqrt{3}+1}{2}\)
\(\dfrac{\sqrt[]{2+\sqrt[]{3}}}{\sqrt[]{2}}=\dfrac{\sqrt[]{4+2\sqrt[]{3}}}{2}=\dfrac{\sqrt{\left(\sqrt[]{3}+1\right)^2}}{2}=\dfrac{\sqrt{3}+1}{2}\)
tính:
a) \(\sqrt{\dfrac{1}{8}}.\sqrt{2}.\sqrt{125}.\sqrt{\dfrac{1}{5}}\)
b)\(\sqrt{\sqrt{2}-1}.\sqrt{\sqrt{2}+1}\)
c) \(\sqrt{11-6\sqrt{2}}.\sqrt{11+6\sqrt{2}}\)
d) \(\sqrt{12-6\sqrt{3}}.\sqrt{\dfrac{1}{3-\sqrt{3}}}\)
e) \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
f) \(\dfrac{2\sqrt{15}-2\sqrt{10}+\sqrt{6}-3}{2\sqrt{5}-2\sqrt{10}-\sqrt{3}+\sqrt{6}}\)
g) \(\left(\dfrac{1}{5-2\sqrt{6}}+\dfrac{2}{5+2\sqrt{6}}\right)\left(15+2\sqrt{6}\right)\)
\(\dfrac{\sqrt{8-4\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{4\cdot2-4\sqrt{3}}}{\sqrt{2}}=\dfrac{\sqrt{4}\cdot\sqrt{2-\sqrt{3}}}{\sqrt{2}}=\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\)
\(\sqrt{\dfrac{3\sqrt{3}-4}{2\sqrt{3}+1}}-\sqrt{\dfrac{\sqrt{3}+4}{5-2\sqrt{3}}}\)
Tính
a.\(\sqrt{\dfrac{\left(1-\sqrt{3}\right)^2}{9}}+\dfrac{2}{4+\sqrt{4-2\sqrt{3}}}\)
b.\(\dfrac{\sqrt{\sqrt{5}+\sqrt{2}}}{\sqrt{3\sqrt{5}-3\sqrt{2}}}\)
Rút gọn biểu thức
E = \(\dfrac{x+2\sqrt{x}+1}{\sqrt{x}+1}+\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\)
F = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}+1}{3-\sqrt{x}}-\dfrac{3-11\sqrt{x}}{x-9}\)
G = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{4\sqrt{x}-4}{4-x}\)
Trục căn thức ở mẫu:
B = \(\dfrac{1+\sqrt{5}}{2-\sqrt{5}}\) C = \(\dfrac{5-\sqrt{x}}{2\sqrt{x}}\)
D = \(\dfrac{\sqrt{a}+1}{2\sqrt{a}-1}\) E = \(\dfrac{15}{5\sqrt{3}-3\sqrt{5}}\)
Thực hiện phép tính:
\(\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(2+\sqrt{3}\right)\)
Tính : a)\(\dfrac{3\sqrt{2}-2\sqrt{3}}{\sqrt{3}-\sqrt{2}}-\dfrac{3}{3-\sqrt{6}}\)
b)\(\left(2\sqrt{2}-\sqrt{3}\right)^2-2\sqrt{3}\left(\sqrt{3}-2\sqrt{2}\right)\)
c) \(\left(\dfrac{1}{3-\sqrt{5}}-\dfrac{1}{3+\sqrt{5}}\right):\dfrac{5-\sqrt{5}}{\sqrt{5}-1}\)
d)\(\left(3-\dfrac{a-2\sqrt{a}}{\sqrt{a}-2}\right)\left(3+\dfrac{\sqrt{ab}-3\sqrt{a}}{\sqrt{b}-3}\right)\)b \(\ne\) 9 với a\(\ge\)0 , b\(\ge\)0, a\(\ne\) 4
Mọi người ai biết giúp tớ với ạ !! Mai tớ phải nộp rồi !! Cảm ơn mọi người trước !
Thực hiện phép tính:
1)\(\left(\dfrac{4}{3}\sqrt{3}+\sqrt{2}+\sqrt{3\dfrac{1}{3}}\right)\)\(\left(\sqrt{1,2}+\sqrt{2}-4\sqrt{\dfrac{1}{5}}\right)\)
2) \(\left(\sqrt{12}+2\sqrt{27}\right)\dfrac{\sqrt{3}}{2}-\sqrt{150}\)
Tính:
a) \(\dfrac{\sqrt{3-\sqrt{5}}.\left(3+\sqrt{5}\right)}{\sqrt{10}+\sqrt{2}}\)
b) \(\dfrac{1}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\dfrac{1}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)
c) \(\dfrac{\left(\sqrt{5}+2\right)^2-8\sqrt{5}}{2\sqrt{5}-4}\)
Mọi người giúp em với! Em cám ơn trước ạ.