f(x)= (m-2)2 +(m-3)x +m2-4. tính giá trị thực của m để hs là hs chẳn
Tìm tất cả các giá trị thực của tham số m để hs y = (m+1).x^4 - mx^2 +3 có 3 điểm cực trị.
Hàm có 3 điểm cực trị khi và chỉ khi:
\(-m\left(m+1\right)< 0\Rightarrow\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\)
Tìm tất car các giá trị thực của tham số m để hs y= \(\dfrac{m}{3}.x^3-\left(m+1\right).x^2+\left(m-2\right).x-3m\) nghịch biến trên R.
\(y'=mx^2-2\left(m+1\right)x+m-2\)
- Với \(m=0\) ko thỏa mãn
- Với \(m\ne0\) bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m+1\right)^2-m\left(m-2\right)\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\4m+1\le0\end{matrix}\right.\) \(\Rightarrow m\le-\dfrac{1}{4}\)
bài1cho hàm số Y=(2-m)x-2tìm các giá trị của m để HS bậc nhất.tìm hệ số a,b
bài 2, cho hàm số Y=(m-5)x+1.tìm các giá trị để hàm số
a, đồng biến trên R b,nghịch biến trên R
bài 3,cho 2 HS bậc nhất Y=(3-m)\(\times\)x+2(d1) và Y=2x+m(d2)
a,tìm giá trị của m để đồ thị hai hàm số song song với nhau
b,tìm giá trị của m để đồ thị hai hàm số cắt nhau
c,tìm giá trị của m để đồ thị hai hàm số cắt nhau tại 1 điểm trên trục tung
bài 4, cho HS Y=2x=1.tìm hệ số góc ,tung độ gốc,vẽ đồ thị HS trên ,tính góc tạo bởi đường thẳng trên với trục ox
Bài 1:
Để hàm số y=(2-m)x-2 là hàm số bậc nhất thì 2-m<>0
=>m<>2
a=2-m
b=-2
Bài 2:
a: Để hàm số y=(m-5)x+1 đồng biến trên R thì m-5>0
=>m>5
b: Để hàm số y=(m-5)x+1 nghịch biến trên R thì m-5<0
=>m<5
Bài 3:
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3-m=2\\2\ne m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=1\)
b: Để (d1) cắt (d2) thì \(3-m\ne2\)
=>\(m\ne1\)
c: Để (d1) cắt (d2) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}3-m\ne2\\m=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne1\\m=2\end{matrix}\right.\)
=>m=2
Tìm tất cả các giá trị thực của tham số m để hàm số y = x^3 - (3m +1).x^2 + (2m -1)x +m +1 . Có bao nhiêu số tự nhiên m<100 để đồ thị hs có hai điểm cực trị nằm về 2 phía của trục hoành.
79. Gọi S là tập hợp tất cả các giá trị thực cuả tham số thực m sao cho đồ thị hs f(x)= \(\dfrac{x}{\sqrt{x^3+mx+1}-\sqrt[3]{x^4+x+1}+m^2x}\) nhận trục tung làm tiệm cận đứng. Khi đó tích các phần tử của S bằng?
a) f(x)= -1/3x^3 + x^2 -2x +10 tìm điểm cực trị của hs
b) tìm m để hs y=x^3 +3mx^2 + 3(m^2 - 1 )x + m^2 - 3m đạt CĐ,CT tại x1,x2 sao cho x1^2 + x2^2 = 10
Có bao nhiêu giá trị của m để giá trị lớn nhất của HS y =| -x^4 +8x^2 +m| trên đoạn [-1;3] bằng 2018?
Đặt \(g\left(x\right)=-x^4+8x^2+m\Rightarrow g'\left(x\right)=-4x^3+16x\)
\(g'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=0\\x=2\end{matrix}\right.\)
\(f\left(-1\right)=\left|m+7\right|\) ; \(f\left(0\right)=\left|m\right|\) ; \(f\left(2\right)=\left|m+16\right|\) ; \(f\left(3\right)=\left|m-9\right|\)
\(\Rightarrow max\left\{f\left(x\right)\right\}=max\left\{\left|m-9\right|;\left|m+16\right|\right\}\)
TH1: \(\left\{{}\begin{matrix}\left|m+16\right|\ge\left|m-9\right|\\\left|m+16\right|=2018\end{matrix}\right.\) \(\Rightarrow m=2002\)
TH2: \(\left\{{}\begin{matrix}\left|m+16\right|\le\left|m-9\right|\\\left|m-9\right|=2018\end{matrix}\right.\) \(\Rightarrow m=-2027\)
Có 2 giá trị của m
cho y=f(x)= x^3 -2x^2+(2-m)x+1 tìm m để hs y=f(|x|) có 5 đ cực trị
Hàm \(f\left(\left|x\right|\right)\) có 5 điểm cực trị khi \(f\left(x\right)\) có 2 cực trị dương
\(\Rightarrow f'\left(x\right)=3x^2-4x+2-m=0\) có 2 nghiệm dương phân biệt
\(\Rightarrow\left\{{}\begin{matrix}\Delta'=4-3\left(2-m\right)>0\\x_1+x_2=\dfrac{4}{3}>0\\x_1x_2=\dfrac{2-m}{3}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m< 2\end{matrix}\right.\) \(\Rightarrow\dfrac{2}{3}< m< 2\)
79. Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho đồ thị hs f(x) = \(\dfrac{x}{\sqrt{x^3+mx+1}-\sqrt[3]{x^4+x+1}+m^2x}\) nhận trục tung làm tiệm cận đứng . Khi đó tích các phần tử của S bằng ?