79. Gọi S là tập hợp tất cả các giá trị thực cuả tham số thực m sao cho đồ thị hs f(x)= \(\dfrac{x}{\sqrt{x^3+mx+1}-\sqrt[3]{x^4+x+1}+m^2x}\) nhận trục tung làm tiệm cận đứng. Khi đó tích các phần tử của S bằng?
Gọi S là tập hợp các giá trị nguyên của m sao cho đồ thị hàm số y = \(\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}\) có bốn đường tiệm cận (bao gồm tiệm cận đứng và tiệm cận ngang). Tính số phần tử của tập S
25. Với m là tham số bất kỳ , đồ thị hs y= \(\dfrac{x+1}{\left(m^2+1\right).\sqrt{x^2-4}}\) có tất cả bao nhiêu đường tiệm cận ( tiệm cận ngang và tiệm cận đứng)
Mọi người ơi cho mình hỏi bài này với ạ
1.Số đường tiệm cận của hàm số y=\(\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}\) là
2.Tìm tất cả các tiệm cận đứng của đồ thị hàm số y=\(\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}\)
Mình cảm ơn mọi người nhiều lắm !!!!!
42. Tìm tất cả các tiệm cận ngang của đồ thị hs y = \(\dfrac{\sqrt{x^2-4}}{x+3}\)
83. Biết rằng hs f(x)= ax^3 + bx^2 +cx =d đạt cực đại tại điểm x =3 ,đạt cực tiểu tại điểm x =-2 . Tổng số đg tiệm cận đứng và tiệm cận ngang của đồ thị hs y = \(\dfrac{\left(x-1\right)\left(\sqrt{x+2}\right)}{\sqrt{f\left(x\right)-f\left(1\right)}}\) là?
Tìm tất cả các giá trị của tham số m để đồ thị hàm số \(y=\dfrac{x+1}{\sqrt{m^2x^2+m-1}}\) có 4 đường tiệm cận
Câu 1: Tìm m để đồ thị hàm số y = \(\sqrt{4x^2+mx+1}-2x+1\)có tiệm cận đứng là đường thẳng y = \(\dfrac{3}{2}\)
Câu 2: Tổng các giá trị m để đồ thị hàm số y =\(\dfrac{x-1}{x^2-3x-m}\) có đúng một tiệm cận đứng
Câu 3: Tìm các giá trị của m để đồ thị hàm số y =\(\dfrac{x+1}{\sqrt{mx^2+1}}\)có 2 tiệm cận ngang
Chân thành cảm ơn đã chú ý!!
Tìm tập hợp các giá trị của m để đồ thị hàm số y=\(\frac{1+\sqrt{x+1}}{\sqrt{x^2-mx-3m}}\) có đúng hai tiệm cận đứng .
A(0;2) B(0;1/2 ]