ĐK là \(x^2-mx-3m=0\) có 2 nghiệm phân biệt \(x_2>x_1\ge-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\af\left(-1\right)\ge0\\\frac{S}{2}>-1\end{matrix}\right.\Leftrightarrow0< m\le\frac{1}{2}\)
B
ĐK là \(x^2-mx-3m=0\) có 2 nghiệm phân biệt \(x_2>x_1\ge-1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\af\left(-1\right)\ge0\\\frac{S}{2}>-1\end{matrix}\right.\Leftrightarrow0< m\le\frac{1}{2}\)
B
Gọi S là tập hợp các giá trị nguyên của m sao cho đồ thị hàm số y = \(\dfrac{2019x}{\sqrt{17x^2-1}-m\left|x\right|}\) có bốn đường tiệm cận (bao gồm tiệm cận đứng và tiệm cận ngang). Tính số phần tử của tập S
79. Gọi S là tập hợp tất cả các giá trị của tham số thực m sao cho đồ thị hs f(x) = \(\dfrac{x}{\sqrt{x^3+mx+1}-\sqrt[3]{x^4+x+1}+m^2x}\) nhận trục tung làm tiệm cận đứng . Khi đó tích các phần tử của S bằng ?
79. Gọi S là tập hợp tất cả các giá trị thực cuả tham số thực m sao cho đồ thị hs f(x)= \(\dfrac{x}{\sqrt{x^3+mx+1}-\sqrt[3]{x^4+x+1}+m^2x}\) nhận trục tung làm tiệm cận đứng. Khi đó tích các phần tử của S bằng?
26. Tìm số đường tiệm cận ngang và số đường tiệm cận đứng của đồ thị hàm số y = \(\dfrac{\sqrt{x-1}}{x^2-3x+2}\)
Mọi người ơi cho mình hỏi bài này với ạ
1.Số đường tiệm cận của hàm số y=\(\dfrac{\sqrt{x^2+1}-x}{\sqrt{x^2-9}-4}\) là
2.Tìm tất cả các tiệm cận đứng của đồ thị hàm số y=\(\dfrac{2x-1-\sqrt{x^2+x+3}}{x^2-5x+6}\)
Mình cảm ơn mọi người nhiều lắm !!!!!
tìm m để đồ thị hàm số \(y=\sqrt{2x^2+mx}+mx+2m^2\) có tiệm cận ngang
Câu 1: Tìm m để đồ thị hàm số y = \(\sqrt{4x^2+mx+1}-2x+1\)có tiệm cận đứng là đường thẳng y = \(\dfrac{3}{2}\)
Câu 2: Tổng các giá trị m để đồ thị hàm số y =\(\dfrac{x-1}{x^2-3x-m}\) có đúng một tiệm cận đứng
Câu 3: Tìm các giá trị của m để đồ thị hàm số y =\(\dfrac{x+1}{\sqrt{mx^2+1}}\)có 2 tiệm cận ngang
Chân thành cảm ơn đã chú ý!!
tìm m để đồ thị hàm số \(y=\dfrac{x-m}{x^2+3x+4}\) có đúng 1 đường tiệm cận đứng
Câu 1 : Tìm m sao cho giao điểm hai đường tiệm cận của đồ thị hàm số \(y=\frac{mx-3}{x+1}\) nằm trên đường thẳng \(y=x+3\)
A. m = 4 B. m = 1 C. m = 2 D. m = -4
Câu 2 : Số đường tiệm cận của đồ thị hàm số \(y=\frac{\sqrt{x-2}}{x^2-4}\)
A. 3 B. 4 C. 2 D. 1
Câu 3 : Có bao nhiêu số nguyên \(m\in\left[-5;5\right]\) sao cho đồ thị hàm số \(y=\frac{x-1}{x^2-mx+5}\) có đúng hai tiệm cận đứng ?
A. 6 B. 7 C. 5 D. 11
HELP ME !!!